

Leveraging <u>Distributional Discrepancies</u>

For Accuracy-robustness Trade-off

Jiacheng Zhang

School of Computing and Information Systems

The University of Melbourne

1 August 2025

Outline

- Background
- ☐ ICML 2025: Sample-specific Noise Injection for Diffusion-based

Adversarial Purification

☐ ICML 2025: One Stone, Two Birds: Enhancing Adversarial Defense

Through the Lens of Distributional Discrepancy

What is an adversarial example (attack)?

88% Tabby Cat

Adversarial

Perturbations

99% Guacamole

Adversarial examples can significantly drop the classification accuracy to 0%.

How it works?

What is an adversarial example (attack)?

Adding imperceptible, non-random perturbations to input data.

☐ Cannot fool human eyes but **can easily fool** state-of-the-art neural networks.

Why it works?

Why adversarial attack can be successful?

Basic assumption in machine learning

Training Set Test Set

Basic assumption in machine learning

Basic assumption in machine learning

Why do we care?

Why do we care?

- ☐ Cause security and reliability issues in the deployment of machine learning systems.
- \Box E.g., mislead the autonomous driving system to recognize **a stop sign** into **something else**.

11

Why do we care?

- Adding adversarial examples on T-shirts can bypass the Al detection system.
- Let you be invisible to the Al detection system!
- ☐ It's cool but it can cause security and reliability issues.

How to defend against it?

Defend against adversarial attacks

Model **Adversarial Actively Handle** Perspective **Training Adversarial Data Adversarial** Trustworthy Machine Learning Data Perspective Purification **Under Adversarial Data** Passively Handle Adversarial Adversarial Data **Detection** Today's Focus

Adversarial detection

☐ Adversarial Detection (AD): aims to detect and discard AEs.

Discard the adversarial data Input Well-trained NN, **Predicted** Well-trained CNN Labels Well-trained Transformer

Test Data + Adversarial Perturbations

Adversarial purification

☐ Adversarial Purification (AP): aims to shift AEs back towards their natural counterparts.

Test Data + Adversarial Perturbations

Sample-specific Noise Injection for Diffusion-based Adversarial

Purification

Yuhao Sun[^], Jiacheng Zhang[^], Zesheng Ye[^], Chaowei Xiao, Feng Liu^{*}

(^ Co-first authors, * Corresponding authors)

In ICML, 2025.

Preliminary: diffusion-based adversarial purification

A Key Challenge: The Choice of t

- If t is too small, then adversarial noise cannot be fully removed.
- If t is too large, then the purified image may have a different semantic meaning.
- Research gap: current methods empirically select a *fixed* timestep t for all images, which is counterintuitive.

Motivation

- □ Sample-shared noise level *fail* to address diverse adversarial perturbations.
- \square These findings *highlight* the need for sample-specific noise injection levels.

What is the metric?

Intuition from score function

- \square Intuition from score function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$
 - Score $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ represents the momentum of the sample towards high density areas of natural data distribution (Song et al., 2019)

• A lower score norm $\|\nabla_{\mathbf{x}} \log p(\mathbf{x})\|$ indicates the sample is closer to the high-density areas of natural data distribution

Score norms vs perturbation budgets

- We further find that score norms scale directly with perturbation budgets.
- ☐ Score norms can act as *proxies* for estimating the sample-specific noise level.

Sample-specific Score-aware Noise Injection (SSNI)

Main results: CIFAR10

PGD+EOT ℓ_{∞} ($\epsilon=8/255$)				PGD+EOT $\ell_2~(\epsilon=0.5)$			
	DBP Method	Standard	Robust		DBP Method	Standard	Robust
WRN-28-10	Nie et al. (2022) + SSNI-N	89.71±0.72 93.29±0.37 (+3.58)	47.98±0.64 48.63 ± 0.56 (+ 0.65)	01	Nie et al. (2022) + SSNI-N	91.80±0.84 93.95±0.70 (+2.15)	82.81 ± 0.97 82.75±1.01 (-0.06)
	Wang et al. (2022) + SSNI-N	92.45±0.64 94.08±0.33 (+1.63)	36.72±1.05 40.95 ± 0.65 (+ 4.23)	WRN-28-	Wang et al. (2022) + SSNI-N	92.45±0.64 94.08±0.33 (+1.63)	82.29±0.82 82.49 ± 0.75 (+ 0.20)
	Lee & Kim (2023) + SSNI-N	90.10±0.18 93.55±0.55 (+2.66)	56.05±1.11 56.45±0.28 (+0.40)	WF	Lee & Kim (2023) + SSNI-N	90.10±0.18 93.55±0.55 (+3.45)	83.66±0.46 84.05 ± 0.33 (+ 0.39)
91	Nie et al. (2022) + SSNI-N	90.89±1.13 94.47±0.51 (+3.58)	52.15±0.30 52.47 ± 0.66 (+0.32)	91	Nie et al. (2022) + SSNI-N	92.90±0.40 95.12 ± 0.58 (+2.22)	82.94±1.13 84.38 ± 0.58 (+ 1.44)
WRN-70-	Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57 ± 0.24 (+2.47)	43.55±0.58 46.03±1.33 (+2.48)	RN-70-	Wang et al. (2022) + SSNI-N	93.10±0.51 95.57 ± 0.24 (+2.47)	85.03 ± 0.49 84.64±0.51 (-0.39)
	Lee & Kim (2023) + SSNI-N	89.39±1.12 93.82 ± 0.24 (+4.44)	56.97±0.33 57.03 ± 0.28 (+0.06)	WE	Lee & Kim (2023) + SSNI-N	89.39±1.12 93.82 ± 0.24 (+ 4.43)	84.51±0.37 84.83 ± 0.33 (+0.32)

Main results: ImageNet-1K

	PGD+EOT $\ell_{\infty}~(\epsilon=4/255)$							
	DBP Method	Standard	Robust					
	Nie et al. (2022)	68.23±0.92	30.34±0.72					
	+ <i>SSNI-N</i>	70.25 ± 0.56 (+2.02)	33.66±1.04 (+3.32)					
RN-50	Wang et al. (2022)	74.22±0.12	0.39±0.03					
	+ <i>SSNI-N</i>	75.07 ± 0.18 (+0.85)	5.21 ± 0.24 (+4.82)					
	Lee & Kim (2023)	70.18±0.60	42.45±0.92					
	+ SSNI-N	72.69 ± 0.80 (+2.51)	43.48±0.25 (+1.03)					

AutoAttack, DiffAttack and Diff-PGD

			$\ell_{\infty} \; (\epsilon = 8/255)$		
	DBP Method	Standard	AutoAttack	DiffAttack	Diff-PGD
WRN-28-10	Nie et al. (2022) + SSNI-N	89.71±0.72 93.29 ± 0.37 (+ 3.58)	66.73±0.21 66.94±0.44 (+0.21)	47.16±0.48 48.15±0.22 (+0.99)	54.95±0.77 56.10 ± 0.35 (+1.15)
	Wang et al. (2022) + SSNI-N	92.45±0.64 94.08 ± 0.33 (+1.63)	64.48±0.62 66.53±0.46 (+2.05)	54.27±0.72 55.81±0.33 (+1.54)	41.45±0.60 42.91 ± 0.56 (+1.46)
	Lee & Kim (2023) + SSNI-N	90.10±0.18 93.55 ± 0.55 (+3.45)	69.92±0.30 72.27 ± 0.19 (+2.35)	56.04±0.58 56.80 ± 0.41 (+0.76)	59.02±0.28 61.43 ± 0.58 (+2.41)

Inference Time

DBP Method	Noise Injection Method	Time (s)	DBP Method	Noise Injection Method	Time (s)
	-	3.934		-	8.980
Nie et al. (2022)	SSNI-L	4.473	Nie et al. (2022)	SSNI-L	14.515
	SSNI-N	4.474		SSNI-N	14.437
	-	5.174		-	11.271
Wang et al. (2022)	SSNI-L	5.793	Wang et al. (2022)	SSNI-L	16.657
	SSNI-N	5.829		SSNI-N	16.747
	-	14.902		-	35.091
Lee & Kim (2023)	SSNI-L	15.624	Lee & Kim (2023)	SSNI-L	40.526
	SSNI-N	15.534		SSNI-N	40.633

Limitations of DBP framework & SSNI

Limitation 1: Having a pre-trained diffusion model is not always feasible, training a diffusion model is resource-consuming.
 Limitation 2: The inference speed of DBP-based methods is slow.
 Limitation 3: SSNI still injects noise to clean samples, which cannot fully preserve the utility (i.e., clean accuracy) of the model.

Can we do better?

One Stone, Two Birds: Enhancing Adversarial Defense Through the

Lens of Distributional Discrepancy

Jiacheng Zhang, Benjamin I. P. Rubinstein, Jingfeng Zhang, Feng Liu*

(* Corresponding authors)

In ICML, 2025.

Distributional discrepancy minimization improves robustness

Theorem 1. For a hypothesis $h \in \mathcal{H}$ and a distribution $\mathcal{D}_{\mathcal{A}} \in \mathbb{D}$:

Distributional discrepancy minimization improves robustness

Previous Studies: loose bound due to an extra constant

$$R(h, f_{\mathcal{A}}, \mathcal{D}_{\mathcal{A}}) \leq R(h, f_{\mathcal{C}}, \mathcal{D}_{\mathcal{C}}) + d_1(\mathcal{D}_{\mathcal{C}}, \mathcal{D}_{\mathcal{A}}) + C$$

Ours: tight bound without extra constants

$$R(h, f_{\mathcal{A}}, \mathcal{D}_{\mathcal{A}}) \leq R(h, f_{\mathcal{C}}, \mathcal{D}_{\mathcal{C}}) + d_1(\mathcal{D}_{\mathcal{C}}, \mathcal{D}_{\mathcal{A}})$$

very low if h is a well-trained classifier

Distributional-discrepancy-based Adversarial Defense (DAD)

One stone: optimized MMD

First bird: MMD-OPT-based denoiser

Second bird: MMD-OPT-based discriminator

Main results: CIFAR-10

$\ell_{\infty}~(\epsilon=8/255)$				$\ell_2~(\epsilon=0.5)$			
Method	Clean	Robust	Type	Method	Clean	Robust	
WRN-28-10				WRN-28-10			
Gowal et al. (2021)	87.51	63.38		Rebuffi et al. (2021)*	91.79	78.80	
Gowal et al. (2020)*	88.54	62.76	AT	Augustin et al. $(2020)^{\dagger}$	93.96	78.79	
Pang et al. (2022a)	88.62	61.04		Sehwag et al. (2022) [†]	90.93	77.24	
Yoon et al. (2021)	85.66	33.48		Yoon et al. (2021)	85.66	73.32	
Nie et al. (2022)	90.07	46.84	AP	Nie et al. (2022)	91.41	79.45	
Lee & Kim (2023)	90.16	55.82		Lee & Kim (2023)	90.16	83.59	
DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{67.53} \pm \textbf{1.07}$	Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{84.38} \pm \textbf{0.81}$	
WRN	-70-16			WRN-70-16			
Rebuffi et al. (2021)*	92.22	66.56		Rebuffi et al. (2021)*	95.74	82.32	
Gowal et al. (2021)	88.75	66.10	AT	Gowal et al. (2020)*	94.74	80.53	
Gowal et al. (2020)*	91.10	65.87		Rebuffi et al. (2021)	92.41	80.42	
Yoon et al. (2021)	86.76	37.11		Yoon et al. (2021)	86.76	75.66	
Nie et al. (2022)	90.43	51.13	AP	Nie et al. (2022)	92.15	82.97	
Lee & Kim (2023)	90.53	56.88		Lee & Kim (2023)	90.53	83.57	
DAD	$\textbf{93.91} \pm \textbf{0.11}$	$\textbf{67.68} \pm \textbf{0.87}$	Ours	DAD	93.91 ± 0.11	$\textbf{84.03} \pm \textbf{0.75}$	
	Method WRN Gowal et al. (2021) Gowal et al. (2020)* Pang et al. (2022a) Yoon et al. (2021) Nie et al. (2022) Lee & Kim (2023) DAD WRN Rebuffi et al. (2021)* Gowal et al. (2021) Gowal et al. (2020)* Yoon et al. (2021) Nie et al. (2022) Lee & Kim (2023)	MethodCleanWRN-28-10Gowal et al. (2021) 87.51Gowal et al. (2020) *88.54Pang et al. $(2022a)$ 88.62Yoon et al. (2021) 85.66Nie et al. (2022) 90.07Lee & Kim (2023) 90.16DAD94.16 \pm 0.08WRN-70-16Rebuffi et al. (2021) *92.22Gowal et al. (2021) 88.75Gowal et al. (2020) *91.10Yoon et al. (2021) 86.76Nie et al. (2022) 90.43Lee & Kim (2023) 90.53	MethodCleanRobustWRN-28-10Gowal et al. (2021)87.5163.38Gowal et al. (2020)*88.5462.76Pang et al. (2022a)88.6261.04Yoon et al. (2021)85.6633.48Nie et al. (2022)90.0746.84Lee & Kim (2023)90.1655.82DAD94.16 \pm 0.0867.53 \pm 1.07WRN-70-16Rebuffi et al. (2021)*92.2266.56Gowal et al. (2021)88.7566.10Gowal et al. (2020)*91.1065.87Yoon et al. (2021)86.7637.11Nie et al. (2022)90.4351.13Lee & Kim (2023)90.5356.88	Method Clean Robust Type WRN-28-10 Gowal et al. (2021) 87.51 63.38 Gowal et al. (2020)* 88.54 62.76 AT Pang et al. (2022a) 88.62 61.04 AT Yoon et al. (2021) 85.66 33.48 AP Lee & Kim (2023) 90.07 46.84 AP Lee & Kim (2023) 90.16 55.82 Ours WRN-70-16 Rebuffi et al. (2021)* 92.22 66.56 AT Gowal et al. (2021) 88.75 66.10 AT Gowal et al. (2020)* 91.10 65.87 Yoon et al. (2021) 86.76 37.11 AP Lee & Kim (2023) 90.53 56.88	Method Clean Robust Type Method WRN-28-10 Gowal et al. (2021) 87.51 63.38 Rebuffi et al. (2021)* Gowal et al. (2020)* 88.54 62.76 AT Augustin et al. (2020)† Pang et al. (2022a) 88.62 61.04 Sehwag et al. (2022)† Sehwag et al. (2022)† Yoon et al. (2021) 85.66 33.48 AP Yoon et al. (2021) Nie et al. (2022) 90.07 46.84 AP Nie et al. (2022) Lee & Kim (2023) 90.16 55.82 Ours DAD WRN-70-16 WRN-Rebuffi et al. (2021)* 92.22 66.56 AT Gowal et al. (2021)* Gowal et al. (2021)* 92.22 66.56 AT Gowal et al. (2020)* Gowal et al. (2021) 88.75 66.10 AT Gowal et al. (2020)* Rebuffi et al. (2021) 86.76 37.11 Yoon et al. (2021) Nie et al. (2022) 90.43 51.13 AP Nie et al. (2022) Lee & Kim (2023) 9	Method Clean Robust Type Method Clean WRN-28-10 WRN-28-10 Gowal et al. (2021) 87.51 63.38 Rebuffi et al. (2021)* 91.79 Gowal et al. (2020)* 88.54 62.76 AT Augustin et al. (2020)* 93.96 Pang et al. (2022a) 88.62 61.04 Sehwag et al. (2022)* 90.93 Yoon et al. (2021) 85.66 33.48 AP Nie et al. (2021) 85.66 Nie et al. (2022) 90.07 46.84 AP Nie et al. (2022) 91.41 Lee & Kim (2023) 90.16 55.82 Ours DAD 94.16 ± 0.08 WRN-70-16 WRN-70-16 WRN-70-16 WRN-70-16 WRN-70-16 WRN-70-16 Rebuffi et al. (2021)* 95.74 Gowal et al. (2021)* 92.22 66.56 AT Gowal et al. (2020)* 94.74 Gowal et al. (2021) 88.75 66.10 AT Gowal et al. (2021)* 92.41 Yoon et al. (2021) 86.76 37.11	

Main results: ImageNet-1K

$\ell_{\infty}~(\epsilon=4/255)$								
Type	Method	Clean	Robust					
RN-50								
AT	Salman et al. (2020a) Engstrom et al. (2019) Wong et al. (2020)	64.02 62.56 55.62	34.96 29.22 26.24					
AP	Nie et al. (2022) Lee & Kim (2023)	71.48 70.74	38.71 42.15					
Ours	DAD	$\textbf{78.61} \pm \textbf{0.04}$	$\textbf{53.85} \pm \textbf{0.23}$					

Transferability

Trained on WRN-28-10								
Unseen Trans	fer Attack	WRN-70-16	RN-18	RN-50	Swin-T			
PGD+EOT (ℓ_{∞}) $\epsilon = 8/258$ $\epsilon = 12/25$		80.84 ± 0.46 80.26 ± 0.60	80.78 ± 0.60 80.54 ± 0.45	81.47 ± 0.30 80.98 ± 0.36	81.46 ± 0.29 80.40 ± 0.41			
C&W (ℓ_2)	$\epsilon = 0.5$ $\epsilon = 1.0$	82.45 ± 0.19 81.20 ± 0.39	91.30 ± 0.20 90.37 ± 0.17	89.26 ± 0.11 88.65 ± 0.22	93.45 ± 0.17 93.41 ± 0.18			

Strength of DAD

- □ Strength 1: DAD can largely preserve the original utility (i.e., clean accuracy of the classifier).
- Strength 2: Compared to DBP methods that reply on density estimation, learning distributional discrepancies is a simpler and more feasible task.
- □ Strength 3: DAD is efficient in both training and inferencing.

Limitations of DAD

Thank You!

Questions?

Email: Jiachengzhang.ml@gmail.com