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What is an adversarial example (attack)?

88% Tabby Cat 99% Guacamole

Adversarial

Perturbations




What is an adversarial example (attack)?

Adversarial examples can significantly

drop the classification accuracy to 00/0.

How it works?
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What is an adversarial example (attack)? MELBOURNE

[ Adding imperceptible, non-random perturbations to input data.

Clean example Adversarial example

,Z,Y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

U Cannot fool human eyes but can easily fool state-of-the-art neural networks.

Explaining and Harnessing Adversarial Examples. In ICLR, 2015.
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Why adversarial attack can be successful? MELBOURNE

+.007 x
€T sign(V,J(0,x,y)) esign(VgJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Different Distributions —— [ Significant Error ]

Maximum Mean Discrepancy Test is Aware of Adversarial Attacks. In ICML, 2021.



Basic assumption in machine learning
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Basic assumption in machine learning MELEOURNE
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break the assumption

[ Same Distribution J [ Significant Error J

Basic assumption in machine learning
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Why do we care? MELROURNE

[ Cause security and reliability issues in the deployment of machine learning systems.

O E.g., mislead the autonomous driving system to recognize a stop sign into something else.

“Yield Sign”

Authentic Adversarial Adversarial
Input Perturbation Input ;

Black-box adversarial attacks in autonomous vehicle technology. In 49th |EEE Applied Imagery Pattern Recognition Workshop, 2020.
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:.‘-::4. ¥ O Adding adversarial
M examples on T-shirts
can bypass the Al

detection system.

 Let you be invisible to
the Al detection system!

[ It’s cool but it can cause
security and reliability
iIssues.

12

Adversarial T-shirt!l Evading Person Detectors in A Physical World. ArXiv 2019.



How to defend against it?
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Defend against adversarial attacks

Model Adversarial
Actively Handle Perspective  Training
" Adversarial Data
Trustworthy Machine Learning Data Adversarial
==

Under Adversarial Data Purification

Adversarial Data—_ Detection

Today’s Focus

14
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Adversarial detection

 Adversarial Detection (AD): aims to detect and discard AEs.

Discard the adversarial data

Input Well-trained NN, Predicted
Well-trained CNN ‘ Labels

Well-trained Transformer

Test Data + Adversarial Perturbations

15
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Adversarial purification

d Adversarial Purification (AP): aims to shift AEs back towards their natural counterparts.

Input Well-trained NN, Predicted
Well-trained CNN ‘ Labels
Well-trained Transformer

Test Data + Adversarial Perturbations

16
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Sample-specific Noise Injection for Diffusion-based Adversarial

Purification

Yuhao Sun?, Jiacheng Zhang?, Zesheng Ye”, Chaowei Xiao, Feng Liu*

(A Co-first authors, * Corresponding authors)

In ICML, 2025.
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Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.



Preliminary: diffusion-based adversarial purification
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@\'ersarial image ) .
A S Diffused image
Gibbon™ g

Purified imag)

((Panda77

Adversarial — *| DiffPure

image

I Adversarial attack (Backpropagation through SDE)

>

Classifier

- - -p» “Gibbon™

Diffusion Models for Adversarial Purification. In ICML, 2022.

A Key Challenge: The Choice of t

d If t is too small, then adversarial noise
cannot be fully removed.

O If tis too large, then the purified image
may have a different semantic meaning.

[ Research gap: current methods empirically

select a fixed timestep t for all images,
which is counterintuitive.

18



Motivation

t=0—>»t*=100—>»t=0 t=0—>»t*=100—>»t=0
: r SR Y

Prediction:

Prediction: X ady Prediction:

Deer Frog Dog
t=0—> t*=60 —> t=0
; .
Prediction:  Xz4qy ~ Prediction: Prediction:
Bird Dog Cat
(b)
L Sample-shared noise level fail to address diverse adversarial perturbations.
L These findings highlight the need for sample-specific noise injection levels.
19

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.



o5 pe)
THE UNIVERSITY OF

MELBOURNE

at is the metric?

20



THE UNIVERSITY

;,‘..
a2/ N \
WISCONSIN e
THE UNIVERSITY OF

MADISON MELBOURNE

0

Intuition from score function

Q Intuition from score function V,log p(x) 1.000 7~ g il - E 11 i i -_i FEEEZES
& =} = IEFEEEREEFEFEEREEE
§0975- EliE:!;ﬁi!;!Eiigi: Elglil- i ix =
® Score Vylog p(X) represents the momentum of the 3 A s I:I i_i _i‘ fE i: !! !“l Il
sample towards high density areas of natural data o = i % I ! I | ‘AR R gt i§ =k
v JE.o =B R Rl ENERNEE
v 0923 =g s s i gl w
distribution (Song et al., 2019) ° =B Z B s:z=e2EE R REEI
@ € 0875- - = T E-- e
| . _ = =
S - Natural Data T o=
0.850 - . -
® A lower score norm ||V4log p(x)|| indicates the sample - Adversarial Data - .
is closer to the high-density areas of natural data 0 10 20 30 40 50
Timestep / 1000
distribution
21

Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score. In ICML, 2023.
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Score norms vs perturbation budgets

Perturbation Budgets

nat 2/255 4/255 —e— 6/255 —— B/255
900 Adversarial Data Scores
l\ ‘
850 ‘ ' .
A ‘ X N \A J We further find that score norms
‘ { ‘ ' ' \ [ . . .
o \’ 1\ ",/~ |/ N ./ / scale directly with perturbation
g7 ! budgets.
fzj 700
v
(@] .
& 650 (J Score norms can act as proxies
600 Clean Data Scores for estimating the sample-specific
cso noise level.
500
0 10 20 30 40 50 60
Image Index 22

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Sample-specific Score-aware Noise Injection (SSNI)

t=20 t=20
. . )
4 Input x N\ ﬁﬂ’used Images with Sample Specfic tm / Purified Images 5:\ Predicted
T) ) Labels
St Forward ¥ N Reverse N
E E > tx1) =t > 21 Cat
n
dl) = Forward . Reverse A
= o T2 * > t(xzy) =15 > * To y| Off-the-shelf| | p. g
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[ Score Network Sg —> :f):; |sg(x)]] —){ Reweighting Function f ]

[ £ (IEPSGO), ) Crb ]
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(1EPS GOl = 140,47 logp ) .

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.




Main results: CIFAR10

THE UNIVERSITY

PGD+EOT £, (€ = 8/255)

PGD+EOT /5 (e = 0.5)

DBP Method Standard Robust DBP Method Standard Robust
Nie et al. (2022) 89.71+0.72 47.984+0.64 Nie et al. (2022) 01.80+0.84 82.81+0.97
o + SSNI-N 93.29+0.37 (+3.58) 48.6310.56 (+0.65) o + SSNI-N 93.954+0.70 (+2.15) 82.75+1.01 (-0.06)
ﬁ Wang et al. (2022) 92.45+0.64 36.72+1.05 ?\,5 Wang et al. (2022) 02.4540.64 82.29+0.82
E + SSNI-N 94.08+0.33 (+1.63) 40.95+0.65 (+4.23) 5 + SSNI-N 94.08+0.33 (+1.63) 82.4940.75 (+0.20)
= Lee & Kim (2023) 90.10+0.18 56.05+1.11 =  Lee & Kim (2023) 90.104+0.18 83.66+0.46
+ SSNI-N 93.55+0.55 (+2.66) 56.45+0.28 (+0.40) + SSNI-N 93.55+0.55 (+3.45) 84.05+0.33 (+0.39)
Nie et al. (2022) 90.89+1.13 52.15+0.30 Nie et al. (2022) 92.90+0.40 82.94+1.13
o +SSNI-N 94.47+0.51 (+3.58) 52.47+0.66 (+0.32) o +SSNI-N 95.12+0.58 (+2.22) 84.38+0.58 (+1.44)
EI Wang et al. (2022) 93.10+0.51 43.55+0.58 [QI Wang et al. (2022) 93.10+0.51 85.03+0.49
E + SSNI-N 95.574+0.24 (+2.47) 46.03+1.33 (+2.48) Qz; + SSNI-N 95.57+0.24 (+2.47) 84.64+0.51 (-0.39)
2 Lee & Kim (2023) 89.39+1.12 56.97+0.33 2 Lee & Kim (2023) 89.39+1.12 84.514+0.37
+ SSNI-N 93.821+0.24 (+4.44) 57.03+0.28 (+0.06) + SSNI-N 93.821+0.24 (+4.43) 84.83+0.33 (+0.32)

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Main results: ImageNet-1K

PGD+EOT /o (€ = 4/255)

DBP Method Standard Robust
Nie et al. (2022) 68.23+0.92 30.3440.72
+ SSNI-N 70.251+0.56 (+2.02) 33.66+1.04 (+3.32)
% Wang et al. (2022) 74.224+0.12 0.39+4+0.03
5 + SSNI-N 75.07+0.18 (+0.85) 5.2140.24 (+4.82)
Lee & Kim (2023) 70.18+0.60 42.45+0.92
+ SSNI-N 72.69+0.80 (+2.51) 43.48+0.25 (+1.03)

25

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.



AvutoAttack, Diff Attack and Diff-PGD

loo (e = 8/255)

DBP Method Standard AutoAttack DiffAttack Diff-PGD

Nie et al. (2022) 89.71+£0.72 66.73+0.21 47.16+0.48 54.95+0.77
o +S8SNI-N 93.294+0.37 (+3.58) 66.94+0.44 (+0.21) 48.151+0.22 (+0.99) 56.10+0.35 (+1.15)
g‘:& Wang et al. (2022) 92.4540.64 64.48+0.62 54.27+0.72 41.45+0.60
5' + SSNI-N 94.08+0.33 (+1.63) 66.53+0.46 (+2.05) 55.81+0.33 (+1.54) 42.91+0.56 (+1.46)
= Lee & Kim (2023) 90.10+0.18 69.92+0.30 56.04+0.58 59.02+0.28

+ SSNI-N 93.55+0.55 (+3.45) 72.27+0.19 (+2.35) 56.80+0.41 (+0.76) 61.43+0.58 (+2.41)

26

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.



Inference Time

DBP Method Noise Injection Method Time (s) DBP Method Noise Injection Method Time (s)
- 3.934 - 8.980
Nie et al. (2022) SSNI-L 4473 Nie et al. (2022) SSNI-L 14.515
SSNI-N 4.474 SSNI-N 14.437
- 5.174 - 11.271
Wang et al. (2022) SSNI-L 5.793 Wang et al. (2022) SSNI-L 16.657
SSNI-N 5.829 SSNI-N 16.747
- 14.902 - 35.091
Lee & Kim (2023) SSNI-L 15.624 Lee & Kim (2023) SSNI-L 40.526
SSNI-N 15.534 SSNI-N 40.633

27

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Limitations of DBP framework & SSNI MELEOURNE

 Limitation 1: Having a pre-trained diffusion model is not always feasible, training
a diffusion model is resource-consuming.

 Limitation 2: The inference speed of DBP-based methods is slow.

 Limitation 3: SSNI still injects noise to clean samples, which cannot fully preserve
the utility (i.e., clean accuracy) of the model.

Can we do better?

28

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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One Stone, Two Birds: Enhancing Adversarial Defense Through the

Lens of Distributional Discrepancy

Jiacheng Zhang, Benjamin . P. Rubinstein, Jingfeng Zhang, Feng Liu*
(* Corresponding authors)

In ICML, 2025.

29

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Distributional discrepancy minimization improves robustness RIKEN

THE UNIVERSITY OF
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Theorem 1. For a hypothesis h € ‘H and a distribution
Dy € D:

1 S dl (D67 D.A)

risk on adversarial data risk on clean data  distributional discrepancy

30

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Distributional discrepancy minimization improves robustness Mo

(J Previous Studies: loose bound due to an extra constant
R(h’v f.Aa D.A) E R(h’a fCa DC) =+ dl (DCa D.A) +C

(d Ours: tight bound without extra constants

R(h'v anD.A) < (h’a fC:DC) _I_dl(D07DA)

very low if h is a well-trained classifier

31

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.



o5 pe)
THE UNIVERSITY OF

MELBOURNE

Distributional-discrepancy-based Adversarial Defense (DAD) RIKZN

Training | Inference ...
Clean Data —

—>

Test Data

(A Parameters are trained\

Parameters are frozen

_) Maximize

@ Detected as clean Adversarial Data Test Power

MMD-OPT _>>

—

@ Detected as adversarial)

Train
MMD-OPT

<D

|

y
R T

Gaussian Noise

Train

Adversarial Data Denoi +
enoiser 7 @
Denoiser A y d Denoised Data
X ( |
i ‘ : S *
5 | i O' -> Minimize .
@ g MMD-OPT ‘ Denoiser = \
-' : v
- Classifier ]
i C:::_‘;'::py <« Classifier (tlt 32

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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One stone: optimized MMD RIKZN

2
MMD-OPT(SQ: MMD,, (S, S’Z;@)\
Algorithm 1 Optimizing MMD (Liu et al., 2020).

O if same distribution 1: Input: clean data S3™", adversarial data S, learning rate
MMD values . . 7, epoch T7;
1 if different 2: Tnitialize w  wo; A + 107%;
- 3: forepoch=1,...,7 do _
s Tra”"ng 4:  S¢ <+ minibatch from Sg*";
AR DAER 5. S’y < minibatch from S';™";
6: k. < kernel function with parameters w using Eq. (3);
7. M(w) + MMD.(S%, S'; k.) using Eq. (2);
8:  Vi(w) < 6x(S¢,S; k) using Eq. (5);
— 9:  Ja(w) + M(w)/+/Vr(w) using Eq. (4);
o 10: w4 w+ NVadamJr (W);
Test Power 11: end for
12: Output: k,
Train ’
MMD-OPT

33

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.



First bird: MMD-OPT-based denoiser

Adversarial Data Train

Denoiser ~-
w Denoiser a Denoised Data
4

oid | 181 +‘§+ > g
l

MMD-OPT

‘ MMD-OPT(SC » do (Snoise))

- - Minimize . -
Gaussian Noise T < Classifier

Lce(ﬁg(gﬂ(snoise))a YC)
ge~ — arg;nin MIVID'OPT(SCa gG(Snoise)) + o - ﬁce(hz (gG(Snoise))a YC)

34

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.



Second bird: MMD-OPT-based discriminator RIK=N

—2
MMD-OPT(Sy,, S7)= MMD _(Sy, S7; k")
l
0 1

| |

Inference ...

Test Data

®

v Classifier Denoiser
l Denoiser : ’ l
Classifier ] .
') Classifier
Cat 35

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Main results: CIFAR-10 RIKZN

Lo (e = 8/255) £y (e = 0.5)
Type Method Clean Robust Type Method Clean Robust
WRN-28-10 WRN-28-10
Gowal et al. (2021) 87.51 63.38 Rebuffi et al. (2021)* 91.79 78.80
AT  Gowal et al. (2020)* 88.54 62.76 AT  Augustin et al. (2020)1 93.96 78.79
Pang et al. (2022a) 88.62 61.04 Sehwag et al. (2022)1 90.93 77.24
Yoon et al. (2021) 85.66 33.48 Yoon et al. (2021) 85.66 73.32
AP Nie et al. (2022) 90.07 46.84 AP Nie et al. (2022) 91.41 79.45
Lee & Kim (2023) 90.16 55.82 Lee & Kim (2023) 90.16 83.59
Ours DAD 94.16 + 0.08 67.53 + 1.07 Ours DAD 94.16 + 0.08 84.38 + 0.81
WRN-70-16 WRN-70-16
Rebuffi et al. (2021)* 92.22 66.56 Rebuffi et al. (2021)* 95.74 82.32
AT Gowal et al. (2021) 88.75 66.10 AT Gowal et al. (2020)* 94.74 80.53
Gowal et al. (2020)* 91.10 65.87 Rebuffi et al. (2021) 92.41 80.42
Yoon et al. (2021) 86.76 37.11 Yoon et al. (2021) 86.76 75.66
AP Nie et al. (2022) 90.43 51.13 AP Nie et al. (2022) 92.15 82.97
Lee & Kim (2023) 90.53 56.88 Lee & Kim (2023) 90.53 83.57
Ours DAD 93.91 +£0.11 67.68 + 0.87 Ours DAD 9391 +£0.11 84.03 +0.75 36

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.



Main results: ImageNet-1K RIKEN

lo (€ = 4/255)

Type Method Clean Robust
RN-50
Salman et al. (2020a) 64.02 34.96
AT  Engstrom et al. (2019) 62.56 29.22
Wong et al. (2020) 55.62 26.24
AP Nie et al. (2022) 71.48 38.71
Lee & Kim (2023) 70.74 42.15
Ours DAD 78.61 + 0.04 53.85 + 0.23

37

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Transferability RIKEN
Trained on WRN-28-10
Unseen Transfer Attack WRN-70-16 RN-18 RN-50 Swin-T
e = 8/255 80.84 +-0.46 R0.78 +£0.60 81.47+0.30 81.464+0.29
PGD+EOT (£oo) e =12/255 80.26 £ 0.60 80.54 +£0.45 8098 +0.36 80.40 + 0.41
C&W (L) e =0.5 8245 +0.19 9130+£020 89.26+0.11 934540.17
2 e=1.0 81.20 +=0.39 90.37 £0.17 88.65+0.22 9341 +0.18

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Strength of DAD Sen

dStrength 1: DAD can largely preserve the original utility (i.e., clean
accuracy of the classifier).

dStrength 2: Compared to DBP methods that reply on density
estimation, learning distributional discrepancies is a simpler and more
feasible task.

JStrength 3: DAD is efficient in both training and inferencing.

39

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Limitations of DAD RIKZN

950 100
e e
< 925 < 90
o [&]
[&] (@]
< 900 < 80
§e]
o g
G 875 s 70
85.0 60
0 20 40 60 80 100 120 0 20 40 60 80 100

Batch size Proportion of AEs in every batch (%)
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Thank Youl!

Questions?

Email: Jiachengzhang.ml@gmail.com
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