

Leveraging Distributional Discrepancies For Accuracy-robustness Trade-off

Jiacheng Zhang

School of Computing and Information Systems

The University of Melbourne

25 June 2025

Outline

Background

- □ ICML 2025: Sample-specific Noise Injection for Diffusion-based
 - **Adversarial Purification**
- □ ICML 2025: One Stone, Two Birds: Enhancing Adversarial Defense

Through the Lens of Distributional Discrepancy

THE UNIVERSITY OF MELBOURNE

What is an adversarial example (attack)?

Left-or-right challenge: Guess which one is the adversarial example?

What is an adversarial example (attack)?

99% Guacamole

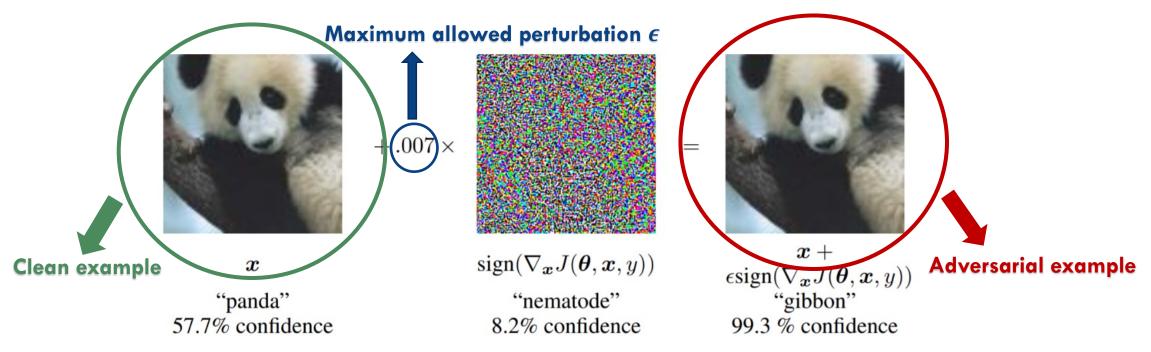
88% Tabby Cat

Adversarial examples can significantly drop the classification accuracy to 0%.

How it works?

What is an adversarial example (attack)?

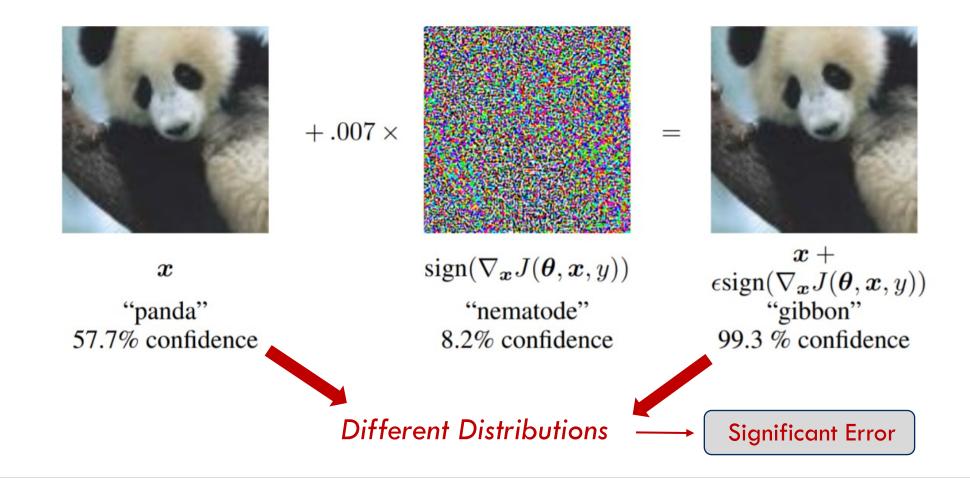
Adding imperceptible, non-random perturbations to input data.



Cannot fool human eyes but **can easily fool** state-of-the-art neural networks.

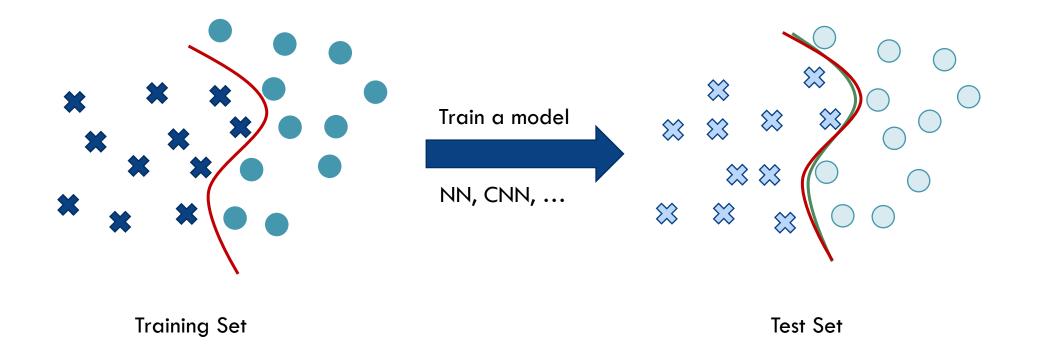
<u>Why</u> it works?

Why adversarial attack can be successful?

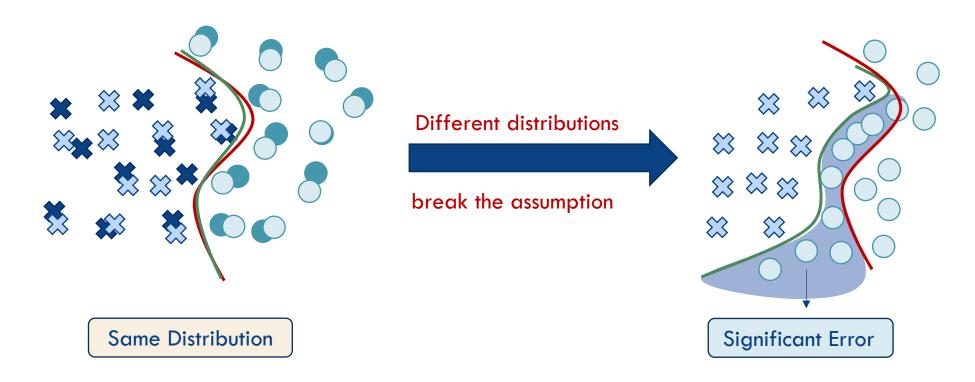


Maximum Mean Discrepancy Test is Aware of Adversarial Attacks. In ICML, 2021.

Basic assumption in machine learning



Basic assumption in machine learning



Basic assumption in machine learning

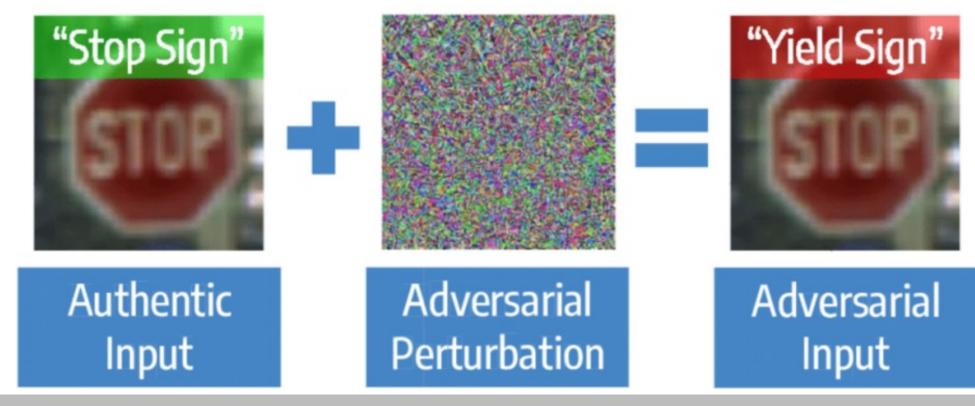
<u>Why</u> do we care?

Black-box adversarial attacks in autonomous vehicle technology. In 49th IEEE Applied Imagery Pattern Recognition Workshop, 2020.

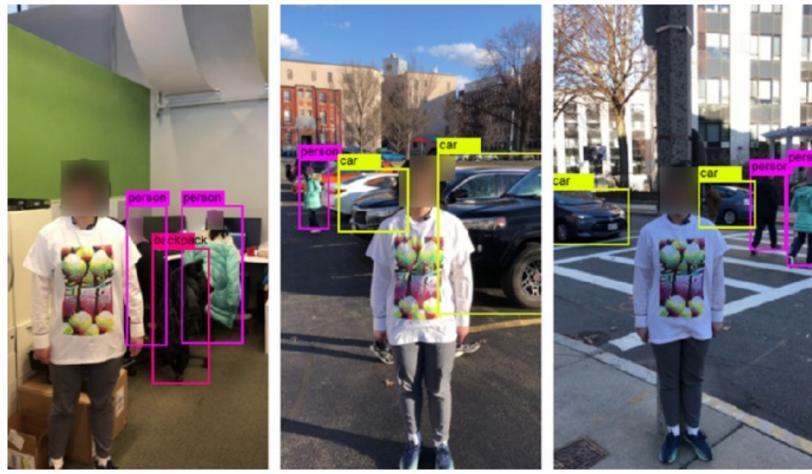
Why do we care?

Cause security and reliability issues in the deployment of machine learning systems.

E.g., mislead the autonomous driving system to recognize a stop sign into something else.



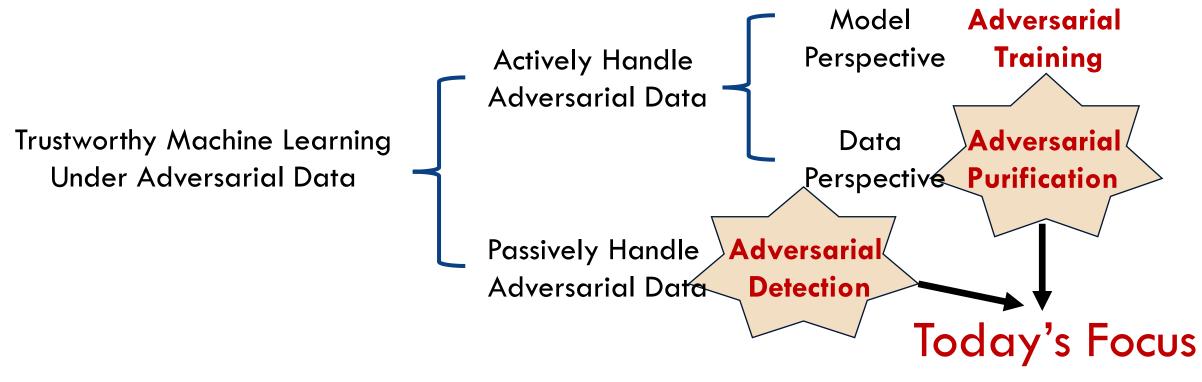
Why do we care?



Adding adversarial examples on T-shirts can bypass the Al detection system.
Let you be invisible to the Al detection system!
It's cool but it can cause security and reliability issues.

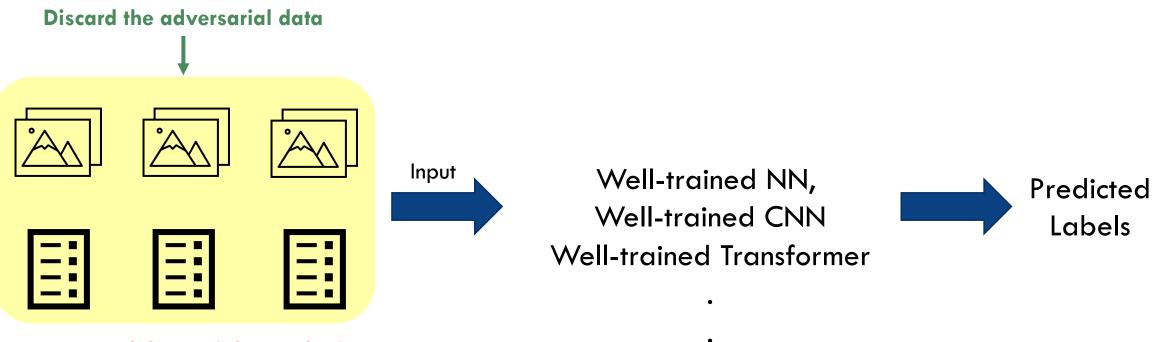
How to defend against it?

Defend against adversarial attacks



Adversarial detection

Adversarial Detection (AD): aims to detect and discard AEs.



Test Data + Adversarial Perturbations

THE UNIVERSITY OF MELBOURNE

Adversarial purification

Adversarial Purification (AP): aims to shift AEs back towards their natural counterparts.

Test Data + Adversarial Perturbations

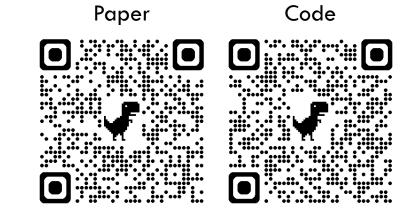
Sample-specific Noise Injection for Diffusion-based Adversarial

Purification

Yuhao Sun[^], Jiacheng Zhang[^], Zesheng Ye[^], Chaowei Xiao, Feng Liu^{*}

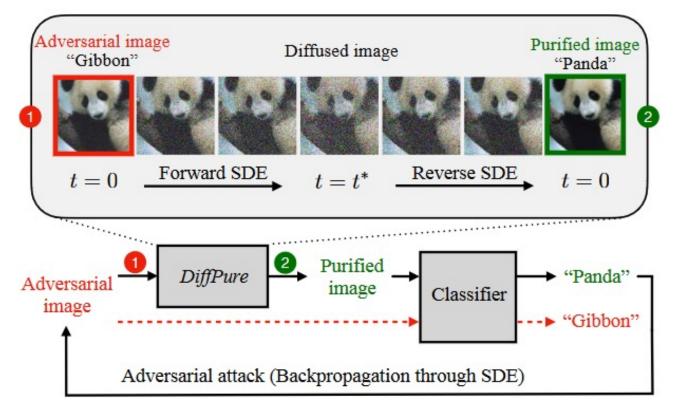
(^ Co-first authors, * Corresponding authors)

In ICML, 2025.



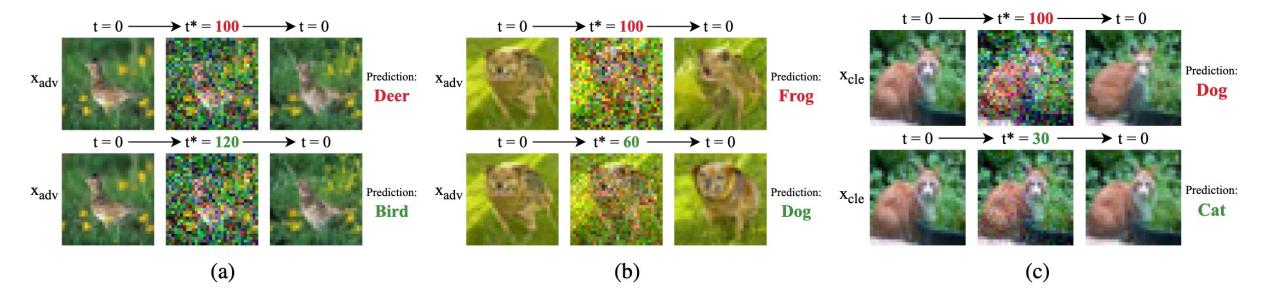
THE UNIVERSITY OF MELBOURNE

Preliminary: diffusion-based adversarial purification



- A Key Challenge: The Choice of t
- If t is too small, then adversarial noise cannot be fully removed.
- ☐ If t is too large, then the purified image may have a different semantic meaning.
- Research gap: current methods empirically select a fixed timestep t for all images, which is counterintuitive.

Motivation



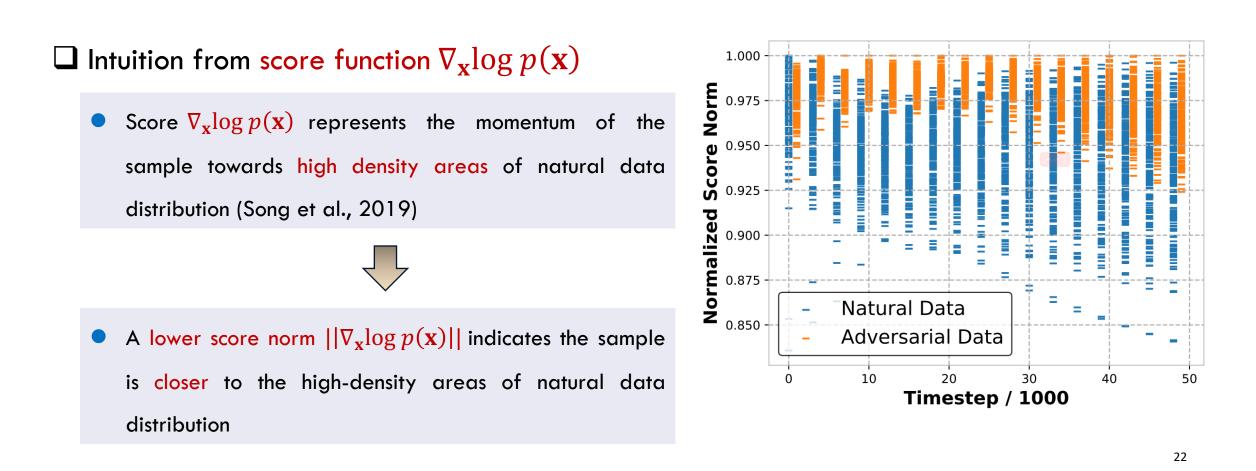
Sample-shared noise level *fail* to address diverse adversarial perturbations.

□ These findings *highlight* the need for sample-specific noise injection levels.

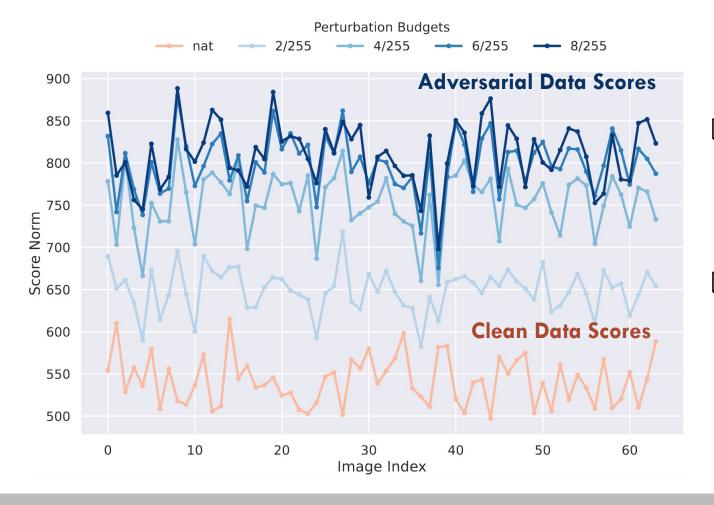
<u>What is the metric?</u>

THE UNIVERSITY OF MELBOURNE

Intuition from score function



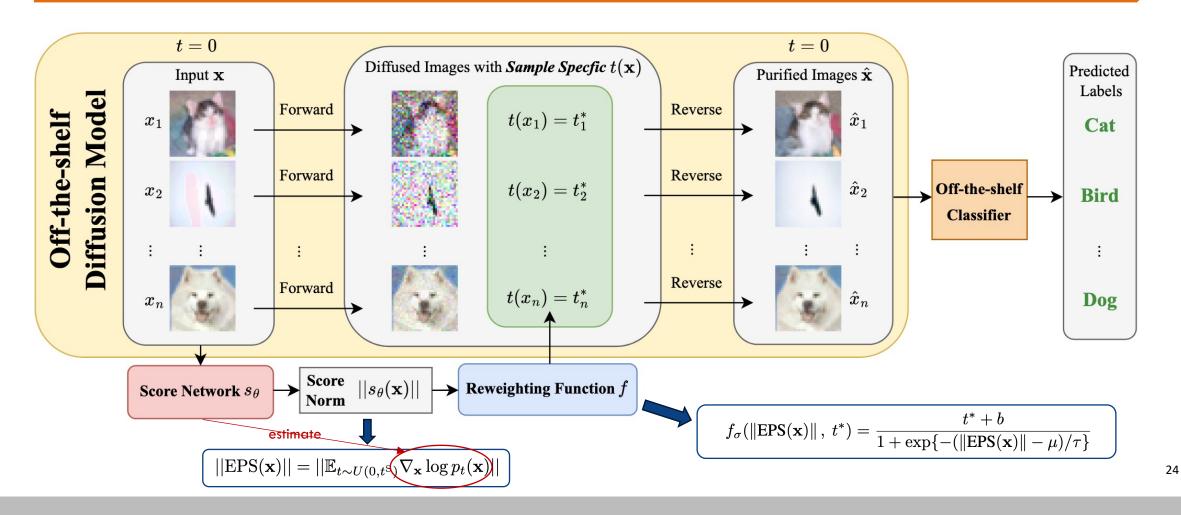
Score norms vs perturbation budgets



We further find that score norms scale directly with perturbation budgets.

Score norms can act as proxies for estimating the sample-specific noise level.

Sample-specific Score-aware Noise Injection (SSNI)



Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.

Main results: CIFAR10

PGD+EOT ℓ_{∞} ($\epsilon = 8/255$)				PGD+EOT ℓ_2 ($\epsilon = 0.5$)			
	DBP Method	Standard	Robust		DBP Method	Standard	Robust
WRN-28-10	Nie et al. (2022) + <i>SSNI-N</i>	89.71±0.72 93.29±0.37 (+3.58)	47.98±0.64 48.63±0.56 (+0.65)	WRN-28-10	Nie et al. (2022) + <i>SSNI-N</i>	91.80±0.84 93.95±0.70 (+2.15)	82.81±0.97 82.75±1.01 (-0.06)
	Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.63)	36.72±1.05 40.95±0.65 (+4.23)		Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.63)	82.29±0.82 82.49±0.75 (+0.20)
	Lee & Kim (2023) + <i>SSNI-N</i>	90.10±0.18 93.55±0.55 (+2.66)	56.05±1.11 56.45±0.28 (+0.40)		Lee & Kim (2023) + <i>SSNI-N</i>	90.10±0.18 93.55±0.55 (+3.45)	83.66±0.46 84.05±0.33 (+0.39)
WRN-70-16	Nie et al. (2022) + <i>SSNI-N</i>	90.89±1.13 94.47±0.51 (+3.58)	52.15±0.30 52.47±0.66 (+0.32)	WRN-70-16	Nie et al. (2022) + <i>SSNI-N</i>	92.90±0.40 95.12±0.58 (+2.22)	82.94±1.13 84.38±0.58 (+1.44)
	Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57±0.24 (+2.47)	43.55±0.58 46.03±1.33 (+2.48)		Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57±0.24 (+2.47)	85.03±0.49 84.64±0.51 (-0.39)
	Lee & Kim (2023) + <i>SSNI-N</i>	89.39±1.12 93.82±0.24 (+4.44)	56.97±0.33 57.03±0.28 (+0.06)		Lee & Kim (2023) + <i>SSNI-N</i>	89.39±1.12 93.82±0.24 (+4.43)	84.51±0.37 84.83±0.33 (+0.32)

Main results: ImageNet-1K

PGD+EOT $\ell_{\infty}~(\epsilon=4/255)$						
	DBP Method	Standard	Robust			
	Nie et al. (2022)	68.23±0.92	30.34±0.72			
	+ SSNI-N	70.25±0.56 (+2.02)	33.66±1.04 (+3.32)			
-50	Wang et al. (2022)	74.22 ± 0.12	$0.39{\pm}0.03$			
RN	+ SSNI-N	75.07±0.18 (+0.85)	5.21±0.24 (+4.82)			
	Lee & Kim (2023)	$70.18{\pm}0.60$	$42.45 {\pm} 0.92$			
	+ SSNI-N	72.69±0.80 (+2.51)	43.48±0.25 (+1.03)			

- Limitation 1: Having a pre-trained diffusion model is not always feasible, training a diffusion model is resource-consuming.
- Limitation 2: The inference speed of DBP-based methods is slow.
- Limitation 3: SSNI still injects noise to clean samples, which cannot fully preserve the utility (i.e., clean accuracy) of the model.

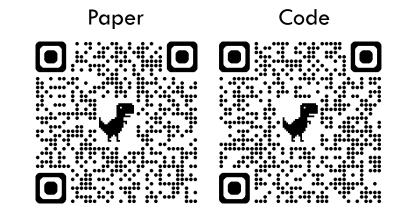
<u>Can</u> we do better?

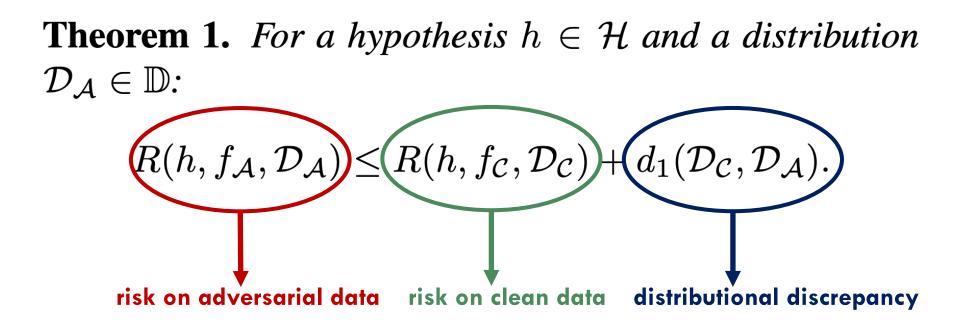
One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy

Jiacheng Zhang, Benjamin I. P. Rubinstein, Jingfeng Zhang, Feng Liu*

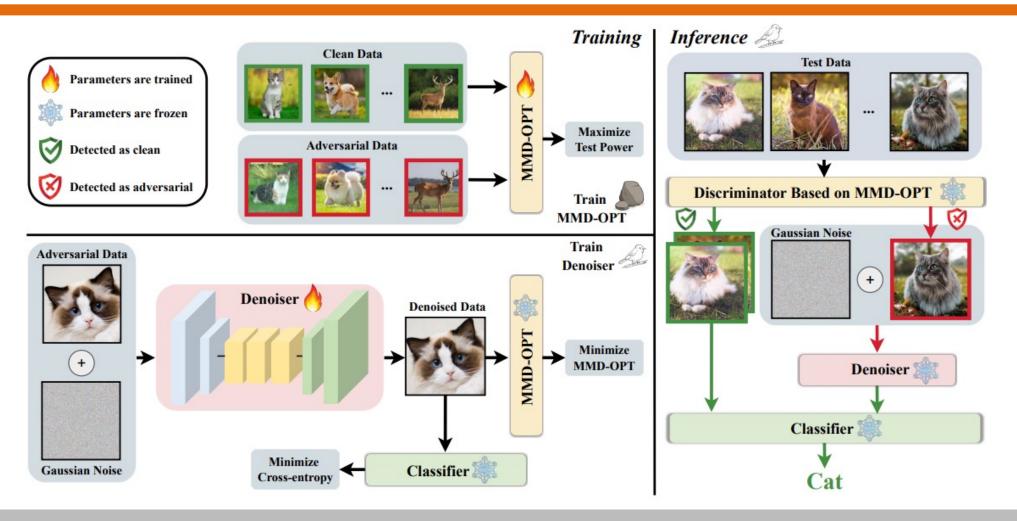
(* Corresponding authors)

In ICML, 2025.

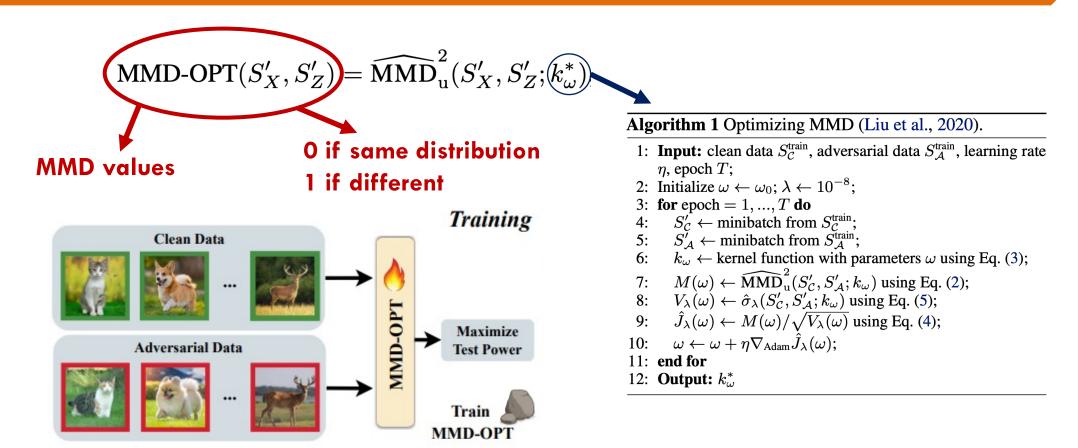




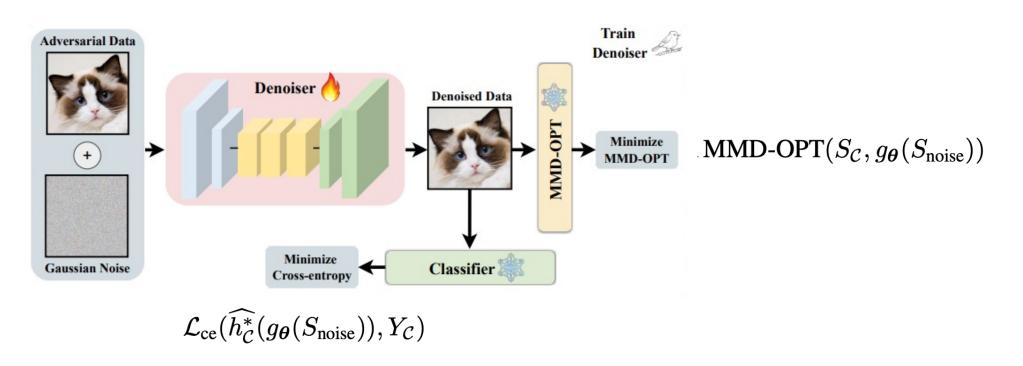
Distributional-discrepancy-based Adversarial Defense (DAD)



One stone: optimized MMD

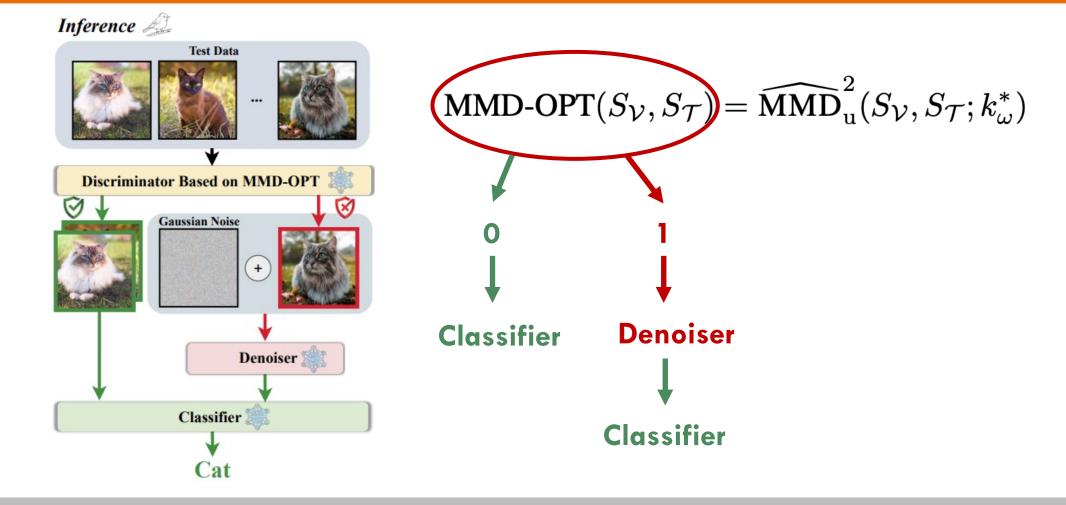


First bird: MMD-OPT-based denoiser



$$g_{\theta^*} = \underset{\theta}{\operatorname{arg\,min\,MMD-OPT}(S_{\mathcal{C}}, g_{\theta}(S_{\operatorname{noise}})) + \alpha \cdot \mathcal{L}_{\operatorname{ce}}(\widehat{h_{\mathcal{C}}^*}(g_{\theta}(S_{\operatorname{noise}})), Y_{\mathcal{C}}))$$

Second bird: MMD-OPT-based discriminator



Main results: CIFAR-10

$\ell_{\infty} \ (\epsilon = 8/255)$				$\ell_2 \ (\epsilon = 0.5)$				
Туре	Method	Clean	Robust	Туре	Method	Clean	Robust	
WRN-28-10			WRN-28-10					
	Gowal et al. (2021)	87.51	63.38		Rebuffi et al. (2021)*	91.79	78.80	
AT	Gowal et al. (2020)*	88.54	62.76	AT	Augustin et al. (2020) [†]	93.96	78.79	
	Pang et al. (2022a)	88.62	61.04		Sehwag et al. $(2022)^{\dagger}$	90.93	77.24	
	Yoon et al. (2021)	85.66	33.48		Yoon et al. (2021)	85.66	73.32	
AP	Nie et al. (2022)	90.07	46.84	AP	Nie et al. (2022)	91.41	79.45	
	Lee & Kim (2023)	90.16	55.82		Lee & Kim (2023)	90.16	83.59	
Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{67.53} \pm \textbf{1.07}$	Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{84.38} \pm \textbf{0.81}$	
WRN-70-16					WRN-70-16			
	Rebuffi et al. (2021)*	92.22	66.56		Rebuffi et al. (2021)*	95.74	82.32	
AT	Gowal et al. (2021)	88.75	66.10	AT	Gowal et al. (2020)*	94.74	80.53	
	Gowal et al. (2020)*	91.10	65.87		Rebuffi et al. (2021)	92.41	80.42	
	Yoon et al. (2021)	86.76	37.11		Yoon et al. (2021)	86.76	75.66	
AP	Nie et al. (2022)	90.43	51.13	AP	Nie et al. (2022)	92.15	82.97	
	Lee & Kim (2023)	90.53	56.88		Lee & Kim (2023)	90.53	83.57	
Ours	DAD	$\textbf{93.91} \pm \textbf{0.11}$	$\textbf{67.68} \pm \textbf{0.87}$	Ours	DAD	93.91 ± 0.11	$\textbf{84.03} \pm \textbf{0.75}$	

Main results: ImageNet-1K

$\ell_{\infty} \ (\epsilon = 4/255)$							
Туре	Method	Clean	Robust				
RN-50							
	Salman et al. (2020a)	64.02	34.96				
AT	Engstrom et al. (2019)	62.56	29.22				
	Wong et al. (2020)	55.62	26.24				
AP	Nie et al. (2022)	71.48	38.71				
AP	Lee & Kim (2023)	70.74	42.15				
Ours	DAD	$\textbf{78.61} \pm \textbf{0.04}$	$\textbf{53.85} \pm \textbf{0.23}$				

Strength 1: DAD can largely preserve the original utility (i.e., clean accuracy of the classifier).

Strength 2: Compared to DBP methods that reply on density estimation, learning distributional discrepancies is a simpler and more feasible task.

Strength 3: DAD is efficient in both training and inferencing.

Thank You!