

How to Improve Model Robustness? A Distributional-Discrepancy Perspective

Jiacheng Zhang

School of Computing and Information Systems

The University of Melbourne

2 December 2025

- Background
- ☐ ICML 2025: Sample-specific Noise Injection for Diffusion-based
 - **Adversarial Purification**
- ☐ ICML 2025: One Stone, Two Birds: Enhancing Adversarial Defense

Through the Lens of Distributional Discrepancy

What is an adversarial example (attack)?

88% Tabby Cat

30 70 Tubby Cui

Adversarial

Perturbations

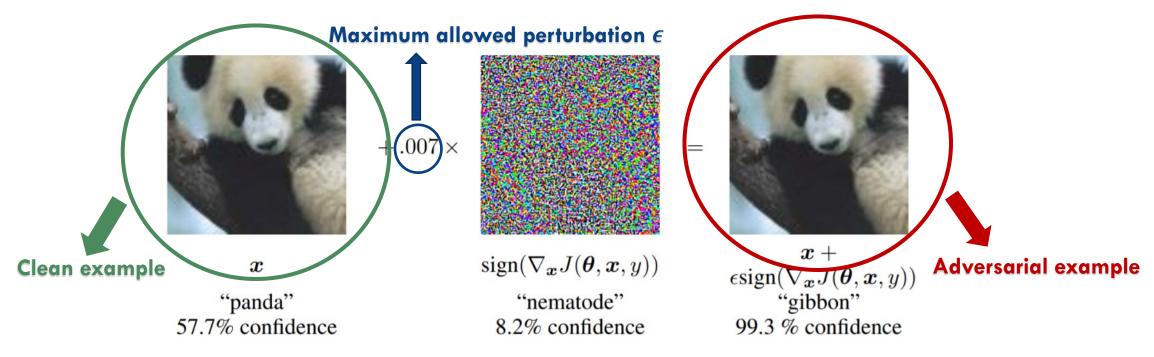
99% Guacamole

Adversarial examples can significantly drop the classification accuracy to 0%.

How it works?

What is an adversarial example (attack)?

Adding imperceptible, non-random perturbations to input data.

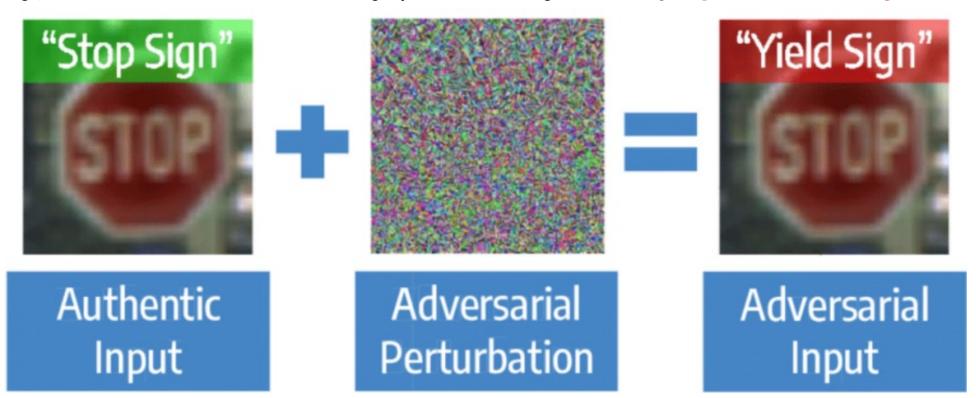


Cannot fool human eyes but can easily fool state-of-the-art neural networks.

Why do we care?

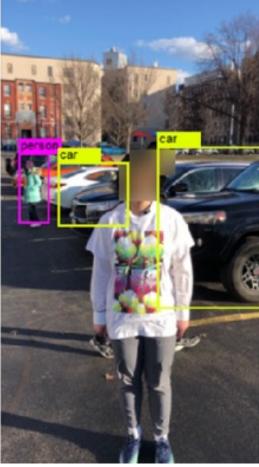
Why do we care?

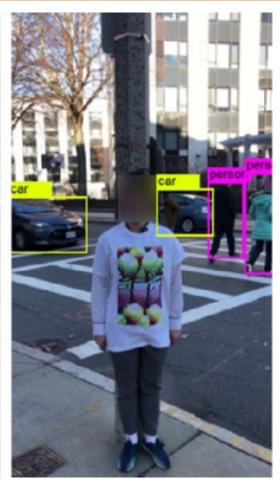
- ☐ Cause security and reliability issues in the deployment of machine learning systems.
- \square E.g., mislead the autonomous driving system to recognize ${f a}$ stop sign into something else.



7

Why do we care?

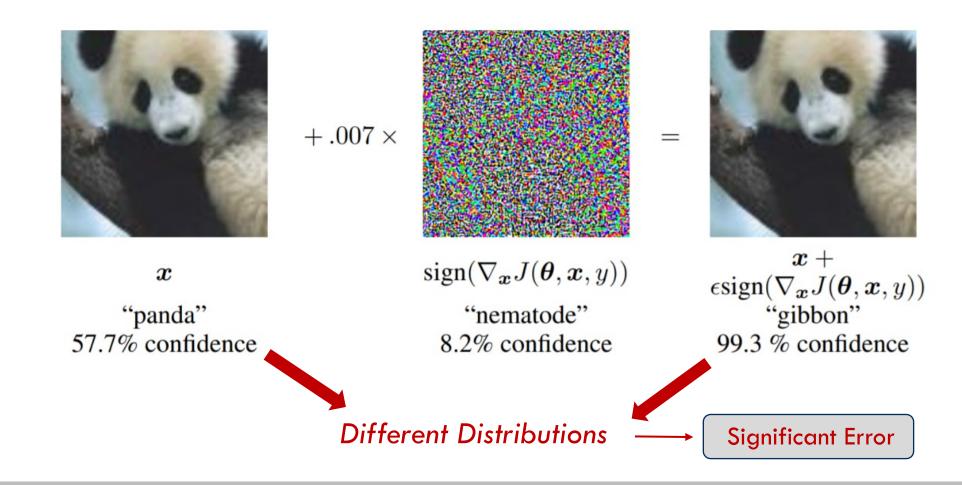




- Adding adversarial examples on T-shirts can bypass the Al detection system.
- Let you be invisible to the Al detection system!
- ☐ It's cool but it can cause security and reliability issues.

Why it works?

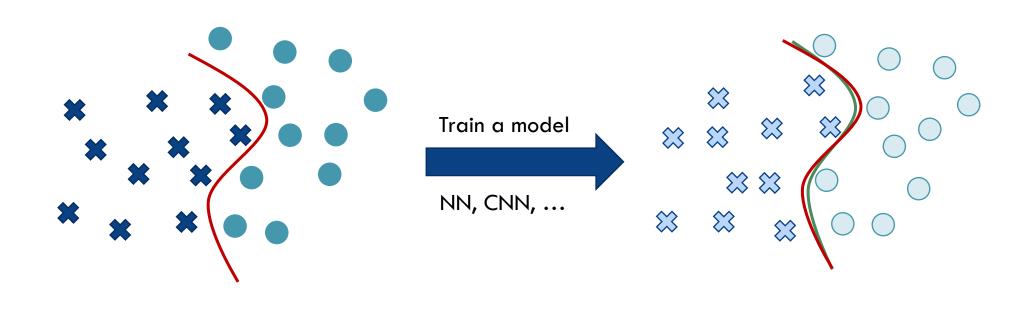
Why adversarial attack can be successful?



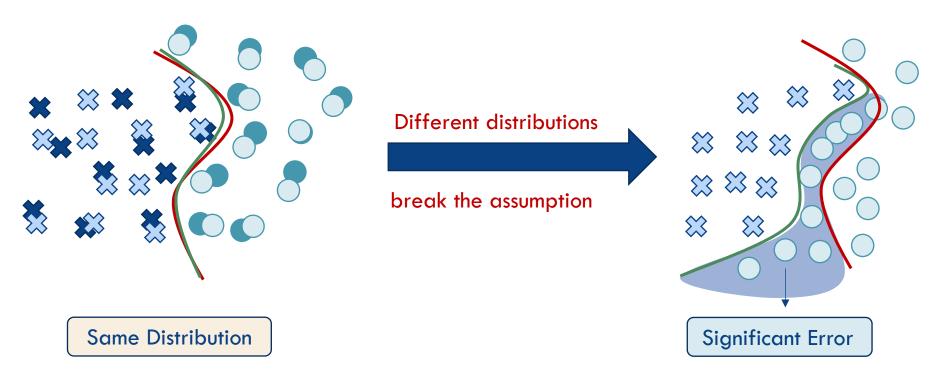
Test Set

Basic assumption in machine learning

Training Set



Basic assumption in machine learning

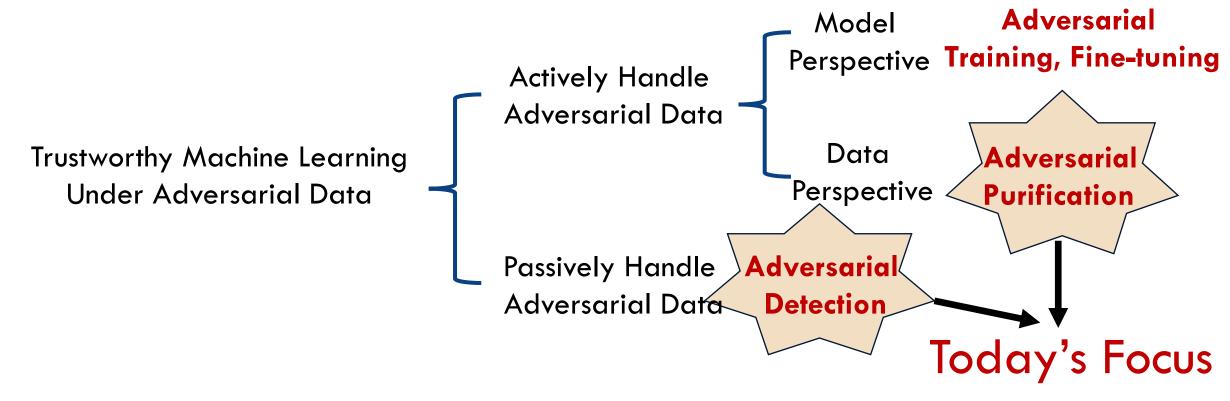


Basic assumption in machine learning

Break the assumption!!!

How to defend against it?

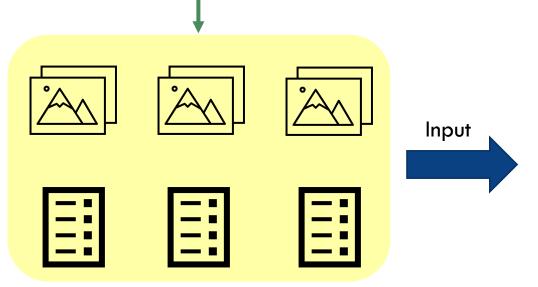
Defend against adversarial attacks



Adversarial detection

☐ Adversarial Detection (AD): aims to detect and discard AEs.

Discard the adversarial data



Well-trained NN,
Well-trained CNN
Well-trained Transformer

Test Data + Adversarial Perturbations

Adversarial purification

☐ Adversarial Purification (AP): aims to shift AEs back towards their natural counterparts.

Well-trained NN,
Well-trained CNN
Well-trained Transformer

Test Data + Adversarial Perturbations

16

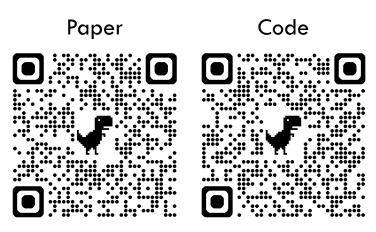
Sample-specific Noise Injection for Diffusion-based Adversarial

Purification

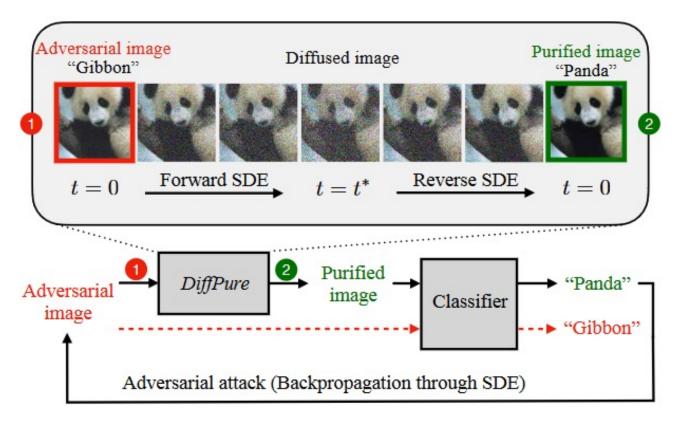
Yuhao Sun[^], Jiacheng Zhang[^], Zesheng Ye[^], Chaowei Xiao, Feng Liu^{*}

(^ Co-first authors, * Corresponding authors)

In ICML, 2025.

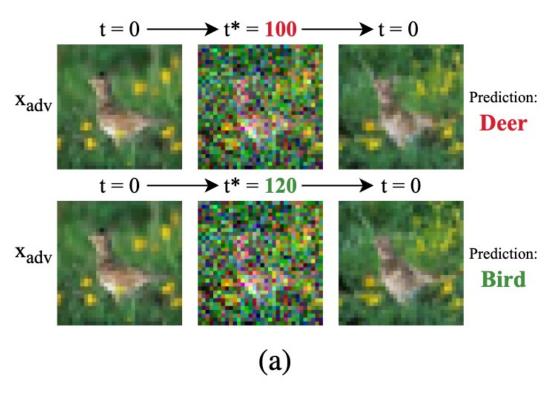


Preliminary: diffusion-based adversarial purification



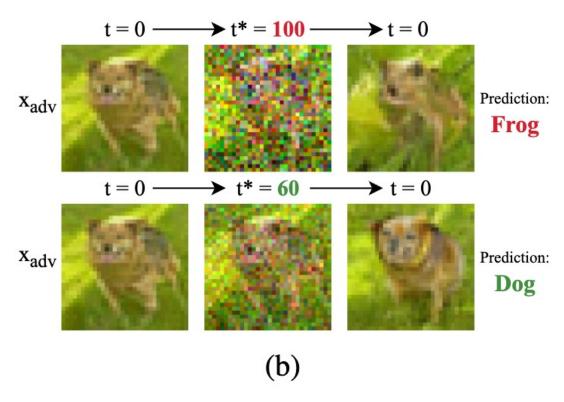
A Key Challenge: The Choice of t

- If t is too small, then adversarial noise cannot be fully removed.
- If t is too large, then the purified image may have a different semantic meaning.
- Research gap: current methods empirically select a *fixed* timestep t for all images, which is counterintuitive.



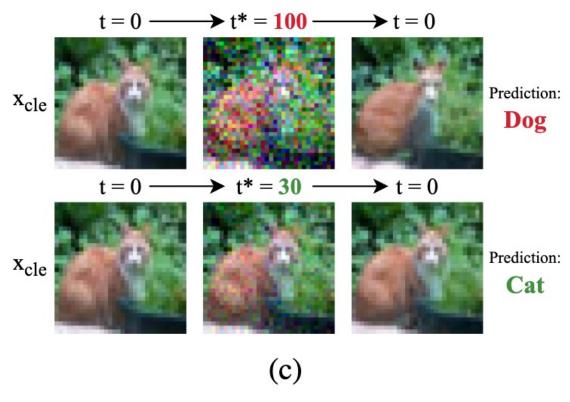
Sample-shared noise level is sometimes insufficient to remove adversarial perturbations.

Motivation



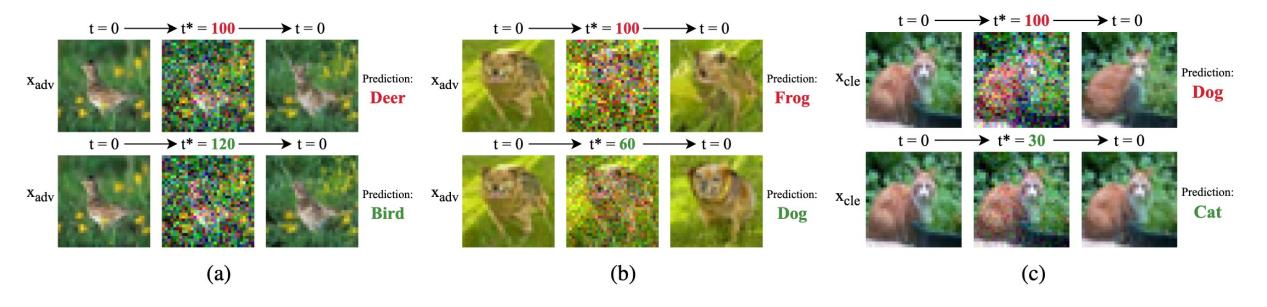
Sample-shared noise level is sometimes too large, which causes excessive disruption of the sample's semantic information, making it difficult to recover the original semantics.

Motivation



□ Sample-shared noise level is often too large for clean examples, as they do not need to be purified.

Proof-of-concept Experiment



- Sample-shared noise level fail to address diverse adversarial perturbations.
- ☐ These findings *highlight* the need for sample-specific noise injection levels.

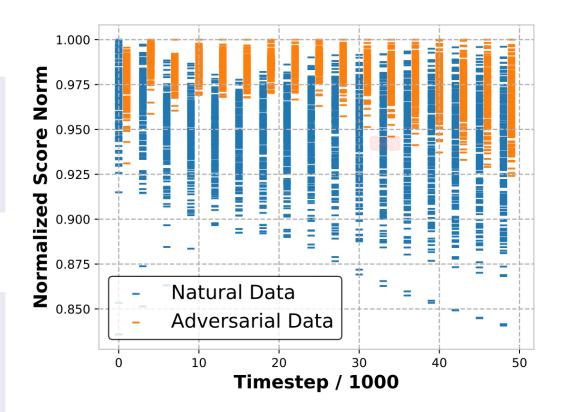
What is the metric?

Intuition from score function

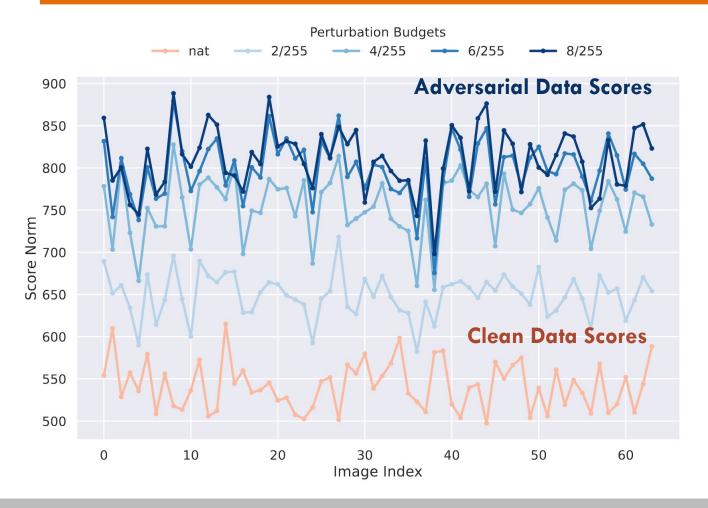
\square Intuition from score function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

• Score $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ represents the momentum of the sample towards high density areas of natural data distribution (Song et al., 2019)

• A lower score norm $||\nabla_{\mathbf{x}} \log p(\mathbf{x})||$ indicates the sample is closer to the high-density areas of natural data distribution

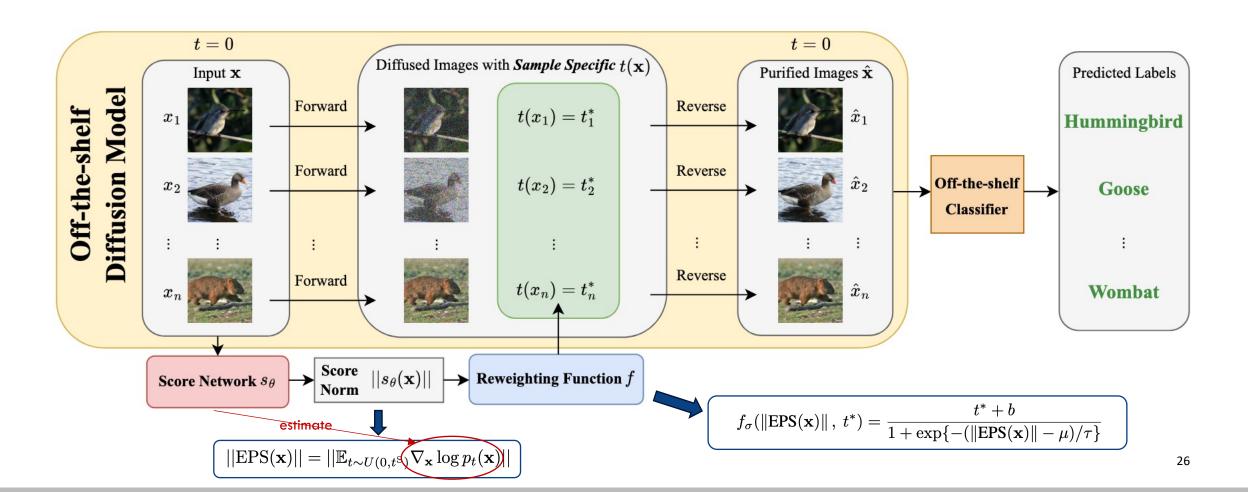


Score norms vs perturbation budgets

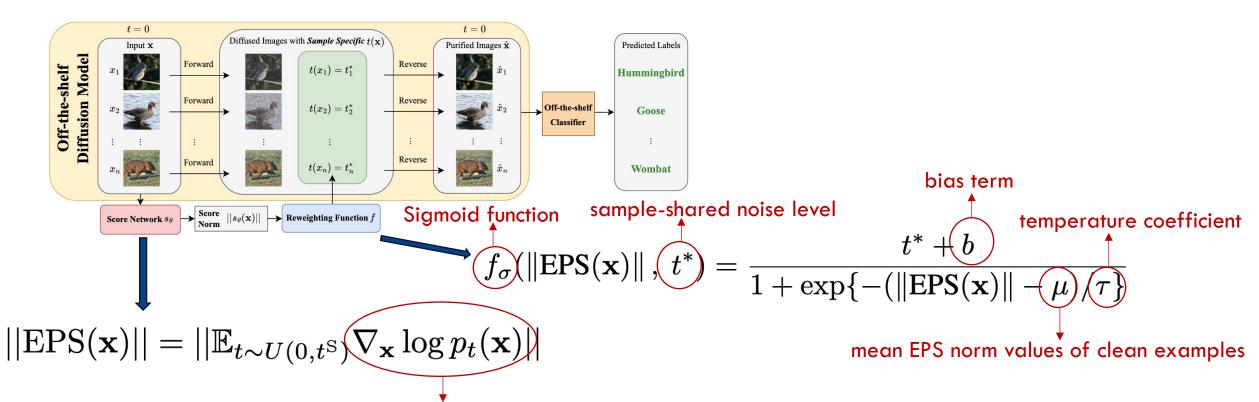


- We further find that score norms scale directly with perturbation budgets.
- ☐ Score norms can act as *proxies* for estimating the sample-specific noise level.

Sample-specific Score-aware Noise Injection (SSNI)



Sample-specific Score-aware Noise Injection (SSNI)



the expectation of the scores of perturbed images across different noise levels $t \sim U(0, t^S)$

Main results: CIFAR10

PGD+EOT $\ell_{\infty}~(\epsilon=8/255)$				PGD+EOT $\ell_2~(\epsilon=0.5)$			
	DBP Method	Standard	Robust		DBP Method	Standard	Robust
WRN-28-10	Nie et al. (2022) + SSNI-N	89.71±0.72 93.29±0.37 (+3.58)	47.98±0.64 48.63 ± 0.56 (+0.65)	01	Nie et al. (2022) + SSNI-N	91.80±0.84 93.95±0.70 (+2.15)	82.81 ± 0.97 82.75±1.01 (-0.06)
	Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.63)	36.72±1.05 40.95 ± 0.65 (+ 4.23)	WRN-28-	Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.63)	82.29±0.82 82.49 ± 0.75 (+ 0.20)
	Lee & Kim (2023) + SSNI-N	90.10±0.18 93.55±0.55 (+2.66)	56.05±1.11 56.45±0.28 (+0.40)	WF	Lee & Kim (2023) + SSNI-N	90.10±0.18 93.55±0.55 (+3.45)	83.66±0.46 84.05 ± 0.33 (+ 0.39)
91	Nie et al. (2022) + <i>SSNI-N</i>	90.89±1.13 94.47 ± 0.51 (+3.58)	52.15±0.30 52.47 ± 0.66 (+0.32)	91	Nie et al. (2022) + <i>SSNI-N</i>	92.90±0.40 95.12 ± 0.58 (+2.22)	82.94±1.13 84.38 ± 0.58 (+1.44)
WRN-70-	Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57 ± 0.24 (+2.47)	43.55±0.58 46.03±1.33 (+2.48)	-0Z-N3	Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57±0.24 (+2.47)	85.03 ± 0.49 84.64±0.51 (-0.39)
	Lee & Kim (2023) + SSNI-N	89.39±1.12 93.82 ± 0.24 (+4.44)	56.97±0.33 57.03 ± 0.28 (+0.06)	WRN	Lee & Kim (2023) + SSNI-N	89.39±1.12 93.82 ± 0.24 (+4.43)	84.51±0.37 84.83 ± 0.33 (+0.32)

Main results: ImageNet-1K

	PGD+EOT $\ell_{\infty}~(\epsilon=4/255)$						
	DBP Method	Standard	Robust				
	Nie et al. (2022)	68.23±0.92	30.34±0.72				
	+ SSNI-N	70.25 ± 0.56 (+2.02)	33.66±1.04 (+3.32)				
RN-50	Wang et al. (2022)	74.22±0.12	0.39±0.03				
	+ SSNI-N	75.07 ± 0.18 (+0.85)	5.21 ± 0.24 (+ 4.82)				
	Lee & Kim (2023)	70.18±0.60	42.45±0.92				
	+ SSNI-N	72.69 ± 0.80 (+2.51)	43.48±0.25 (+1.03)				

AutoAttack, DiffAttack and Diff-PGD

			$\ell_{\infty} \; (\epsilon = 8/255)$		
	DBP Method	Standard	AutoAttack	DiffAttack	Diff-PGD
N-28-10	Nie et al. (2022) + SSNI-N	89.71±0.72 93.29 ± 0.37 (+ 3.58)	66.73±0.21 66.94±0.44 (+0.21)	47.16±0.48 48.15±0.22 (+0.99)	54.95±0.77 56.10 ± 0.35 (+ 1.15)
	Wang et al. (2022) + SSNI-N	92.45±0.64 94.08 ± 0.33 (+1.63)	64.48±0.62 66.53±0.46 (+2.05)	54.27±0.72 55.81±0.33 (+1.54)	41.45±0.60 42.91 ± 0.56 (+ 1.46)
WRN	Lee & Kim (2023) + SSNI-N	90.10±0.18 93.55±0.55 (+3.45)	69.92±0.30 72.27 ± 0.19 (+2.35)	56.04±0.58 56.80 ± 0.41 (+0.76)	59.02±0.28 61.43 ± 0.58 (+2.41)

DBP Method	Noise Injection Method	Time (s)	DBP Method	Noise Injection Method	Time (s)
	-	3.934		-	8.980
Nie et al. (2022)	SSNI-L	4.473	Nie et al. (2022)	SSNI-L	14.515
	SSNI-N	4.474		SSNI-N	14.437
	-	5.174		-	11.271
Wang et al. (2022)	SSNI-L	5.793	Wang et al. (2022)	SSNI-L	16.657
	SSNI-N	5.829		SSNI-N	16.747
	-	14.902		-	35.091
Lee & Kim (2023)	SSNI-L	15.624	Lee & Kim (2023)	SSNI-L	40.526
	SSNI-N	15.534		SSNI-N	40.633

Limitations of DBP framework & SSNI

- Limitation 1: Having a pre-trained diffusion model is not always feasible, training a diffusion model is resource-consuming.
- ☐ Limitation 2: The inference speed of DBP-based methods is slow.
- Limitation 3: SSNI still injects noise to clean samples, which cannot fully preserve the utility (i.e., clean accuracy) of the model.

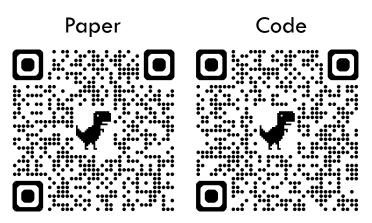
One Stone, Two Birds: Enhancing Adversarial Defense Through the

Lens of Distributional Discrepancy

Jiacheng Zhang, Benjamin I. P. Rubinstein, Jingfeng Zhang, Feng Liu*

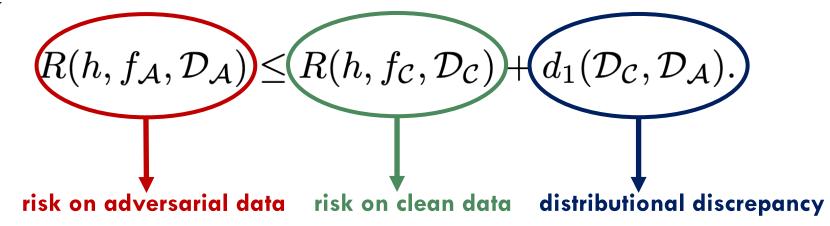
(* Corresponding authors)

In ICML, 2025.



Distributional discrepancy minimization improves robustness

Theorem 1. For a hypothesis $h \in \mathcal{H}$ and a distribution $\mathcal{D}_{\mathcal{A}} \in \mathbb{D}$:

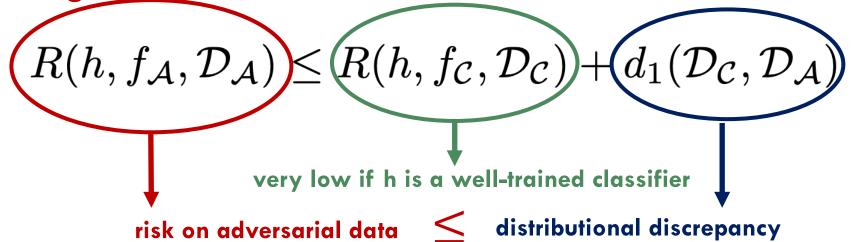


Distributional discrepancy minimization improves robustness

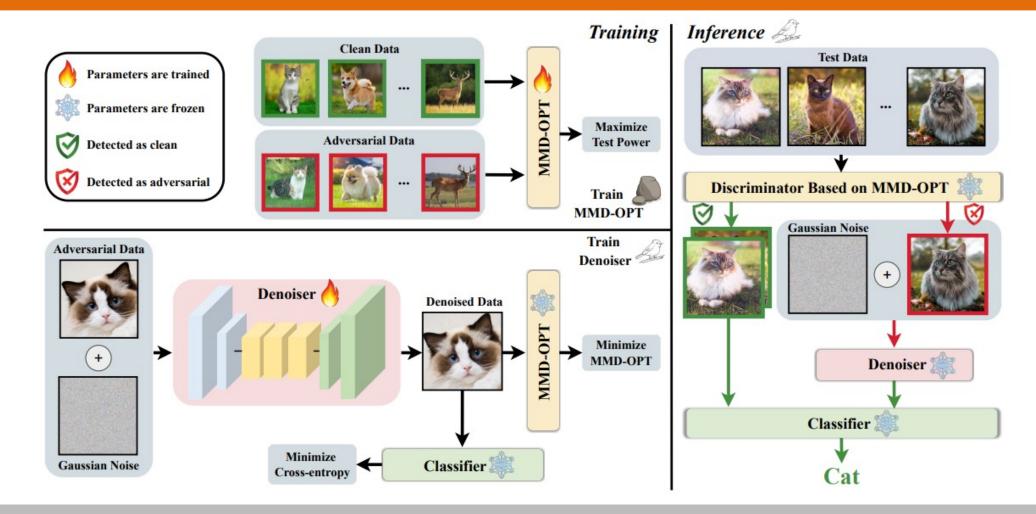
Previous Studies: loose bound due to an extra constant

$$R(h, f_{\mathcal{A}}, \mathcal{D}_{\mathcal{A}}) \leq R(h, f_{\mathcal{C}}, \mathcal{D}_{\mathcal{C}}) + d_1(\mathcal{D}_{\mathcal{C}}, \mathcal{D}_{\mathcal{A}}) + C$$

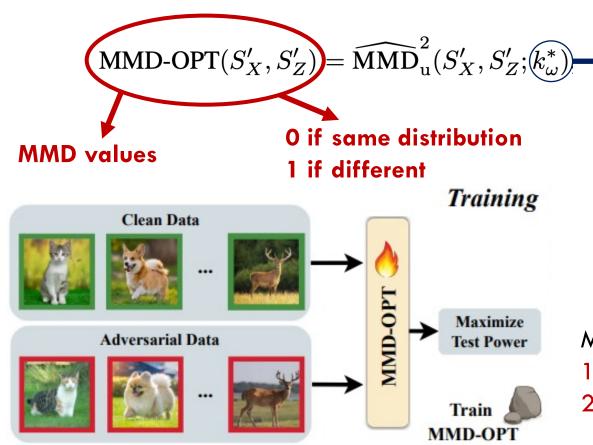
Ours: tight bound without extra constants



Distributional-discrepancy-based Adversarial Defense (DAD)



One stone: optimized MMD



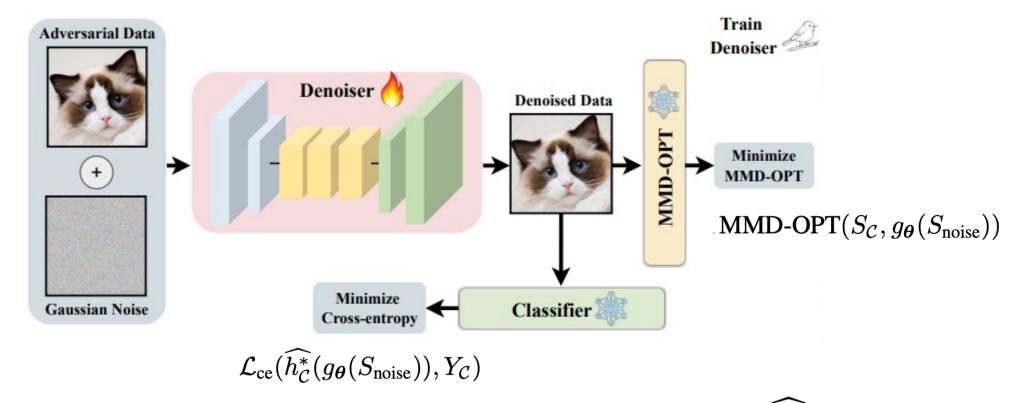
Algorithm 1 Optimizing MMD (Liu et al., 2020).

- 1: **Input:** clean data $S_{\mathcal{C}}^{\text{train}}$, adversarial data $S_{\mathcal{A}}^{\text{train}}$, learning rate η , epoch T;
- 2: Initialize $\omega \leftarrow \omega_0$; $\lambda \leftarrow 10^{-8}$;
- 3: **for** epoch = 1, ..., T **do**
- 4: $S_{\mathcal{C}}^{\prime} \leftarrow \text{minibatch from } S_{\mathcal{C}}^{\text{train}}$
- 5: $S'_{A} \leftarrow \text{minibatch from } S_{A}^{\text{train}};$
- 6: $k_{\omega} \leftarrow$ kernel function with parameters ω using Eq. (3);
- 7: $M(\omega) \leftarrow \widehat{\text{MMD}}_{\mathrm{u}}^{2}(S'_{\mathcal{C}}, S'_{\mathcal{A}}; k_{\omega}) \text{ using Eq. (2)};$
- 8: $V_{\lambda}(\omega) \leftarrow \hat{\sigma}_{\lambda}(S'_{\mathcal{C}}, S'_{\mathcal{A}}; k_{\omega})$ using Eq. (5);
- 9: $\hat{J}_{\lambda}(\omega) \leftarrow M(\omega)/\sqrt{V_{\lambda}(\omega)}$ using Eq. (4);
- 10: $\omega \leftarrow \omega + \eta \nabla_{\text{Adam}} \hat{J}_{\lambda}(\omega);$
- 11: **end for**
- 12: Output: k_{ω}^*

MMD-OPT serves as:

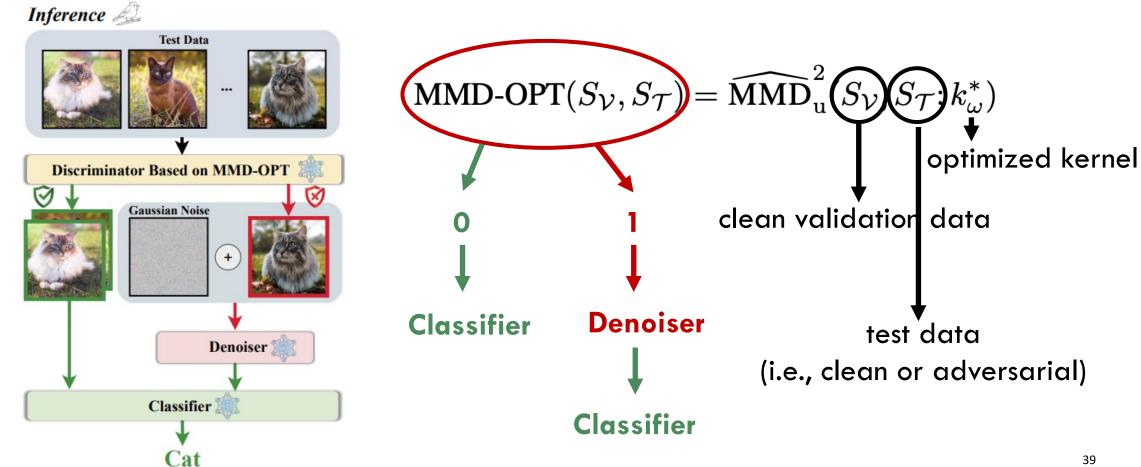
- Guiding signal to to train a denoiser.
- Discriminator to differentiate clean data and adversarial data during inference

First bird: MMD-OPT-based denoiser



Objective: $g_{\theta^*} = \underset{\theta}{\operatorname{arg \, min} \, MMD} \cdot \operatorname{OPT}(S_{\mathcal{C}}, g_{\theta}(S_{\operatorname{noise}})) + \alpha \cdot \mathcal{L}_{\operatorname{ce}}(\widehat{h_{\mathcal{C}}^*}(g_{\theta}(S_{\operatorname{noise}})), Y_{\mathcal{C}})$

Second bird: MMD-OPT-based discriminator



Main results: CIFAR-10

	ℓ_{∞} (ϵ =	= 8/255)			ℓ_2 (ϵ =	= 0.5)		
Type	Method	Clean	Robust	Type	Method	Clean	Robust	
WRN-28-10				WRN-28-10				
	Gowal et al. (2021)	87.51	63.38		Rebuffi et al. (2021)*	91.79	78.80	
AT	Gowal et al. (2020)*	88.54	62.76	AT	Augustin et al. (2020) [†]	93.96	78.79	
	Pang et al. (2022a)	88.62	61.04		Sehwag et al. (2022) [†]	90.93	77.24	
	Yoon et al. (2021)	85.66	33.48		Yoon et al. (2021)	85.66	73.32	
AP	Nie et al. (2022)	90.07	46.84	AP	Nie et al. (2022)	91.41	79.45	
	Lee & Kim (2023)	90.16	55.82		Lee & Kim (2023)	90.16	83.59	
Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{67.53} \pm \textbf{1.07}$	Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{84.38} \pm \textbf{0.81}$	
	WRN	-70-16		WRN-70-16				
	Rebuffi et al. (2021)*	92.22	66.56		Rebuffi et al. (2021)*	95.74	82.32	
AT	Gowal et al. (2021)	88.75	66.10	AT	Gowal et al. (2020)*	94.74	80.53	
	Gowal et al. (2020)*	91.10	65.87		Rebuffi et al. (2021)	92.41	80.42	
AP	Yoon et al. (2021)	86.76	37.11		Yoon et al. (2021)	86.76	75.66	
	Nie et al. (2022)	90.43	51.13	AP	Nie et al. (2022)	92.15	82.97	
	Lee & Kim (2023)	90.53	56.88		Lee & Kim (2023)	90.53	83.57	
Ours	DAD	$\textbf{93.91} \pm \textbf{0.11}$	$\textbf{67.68} \pm \textbf{0.87}$	Ours	DAD	93.91 ± 0.11	$\textbf{84.03} \pm \textbf{0.75}$	

Main results: ImageNet-1K

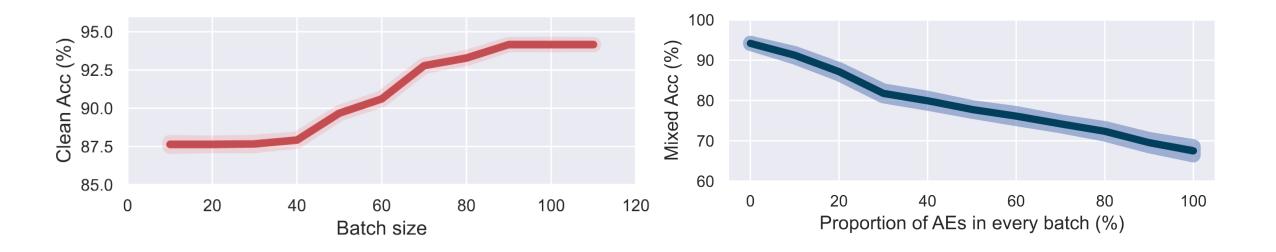
$\ell_{\infty} \; (\epsilon = 4/255)$								
Type	Method	Clean	Robust					
RN-50								
	Salman et al. (2020a)	64.02	34.96					
AT	Engstrom et al. (2019)	62.56	29.22					
	Wong et al. (2020)	55.62	26.24					
AP	Nie et al. (2022)	71.48	38.71					
AP	Lee & Kim (2023)	70.74	42.15					
Ours	DAD	$\textbf{78.61} \pm \textbf{0.04}$	$\textbf{53.85} \pm \textbf{0.23}$					

Transferability

Trained on WRN-28-10							
Unseen Transfer Attack		WRN-70-16	RN-18	RN-50	Swin-T		
PGD+EOT (ℓ_{∞})	$\begin{array}{c} \epsilon = 8/255 \\ \epsilon = 12/255 \end{array}$	80.84 ± 0.46 80.26 ± 0.60	80.78 ± 0.60 80.54 ± 0.45	81.47 ± 0.30 80.98 ± 0.36	81.46 ± 0.29 80.40 ± 0.41		
C&W (ℓ_2)	$\epsilon=0.5$ $\epsilon=1.0$	82.45 ± 0.19 81.20 ± 0.39	91.30 ± 0.20 90.37 ± 0.17	89.26 ± 0.11 88.65 ± 0.22	93.45 ± 0.17 93.41 ± 0.18		

Strength of DAD

- □ Strength 1: DAD can largely preserve the original utility (i.e., clean accuracy of the classifier).
- □ **Strength 2:** Compared to DBP methods that reply on density estimation, learning distributional discrepancies is a simpler and more feasible task.
- □ Strength 3: DAD is efficient in both training and inferencing.



Thank You!