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it works?
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Why adversarial attack can be successful? b e oy | EEOOGE

+.007 x
€r sign(V,J(0,x,y)) esign(VgJ (0, z, 7))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Different Distributions —— [ Significant Error ]

Maximum Mean Discrepancy Test is Aware of Adversarial Attacks. In ICML, 2021.
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Basic assumption in machine learning ” MELBOURNE
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Different distributions

—

break the assumption

[ Same Distribution ] [ Significant Error ]

Basic assumption in machine learning Break the assumption!!!
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How to defend a

gainst it?




Defend against adversarial attacks

Model Adversarial

. T o o , F. _i- o
Actively Handle Perspective Training, Fine-tuning

p—

Adversarial Data

Adversarial
Purification

Trustworthy Machine Learning Data
Under Adversarial Data = Perspective

Passively Handle )Adversarial

Adversarial Data—_ Detection

Today’s Focus

9



Adversarial detection

J Adversarial Detection (AD): aims to detect and discard AEs.

Discard the adversarial data

Input Well-trained NN, Predicted
Well-trained CNN ‘ Labels

Well-trained Transformer

Test Data + Adversarial Perturbations

10



Adversarial purification

J Adversarial Purification (AP): aims to shift AEs back towards their natural counterparts.

Input Well-trained NN, Predicted
Well-trained CNN ‘ Labels
Well-trained Transformer

Test Data + Adversarial Perturbations

11
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Sample-specific Noise Injection for Diffusion-based Adversarial

Purification

Yuhao Sun®, Jiacheng Zhang”, Zesheng Ye”, Chaowei Xiao, Feng Liv*

(A Co-first authors, * Corresponding authors)

In ICML, 2025.
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Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Preliminary: diffusion-based adversarial purification

A Key Challenge: The Choice of t

Purified imag\e
“Panda”

(d\'ersarial image : :
i e Diffused image
Gibbon S

d If tis too small, then adversarial noise
cannot be fully removed.

O If tis too large, then the purified image
may have a different semantic meaning.

Adversarial » DiffPure
image

image Classifier ] [ Research gap: current methods empirically

------------------------------ - - - -» “Gibbon” select a fixed timestep t for all images,

which is counterintuitive.

Adversarial attack (Backpropagation through SDE)

13

Diffusion Models for Adversarial Purification. In ICML, 2022.
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Motivation T

t=0 —>t*=100—>t=0

Prediction:

Deer

Prediction:

Bird

L Sample-shared noise level is sometimes insufficient to remove adversarial perturbations.

14

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Motivation

t=0—>t*=100—>t=0

Prediction:

Frog

Prediction:

Dog

(b)

1 Sample-shared noise level is sometimes too large, which causes excessive disruption of the sample’s

semantic information, making it difficult to recover the original semantics. 15
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Motivation T

t=0 —>t* =100 —>t=0

Prediction:

Dog

Prediction:

Cat

[ Sample-shared noise level is often too large for clean examples, as they do not need to be purified.

16

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Proof-of-concept Experiment MELBOUR

t=0—>»t*=100—>t=0 t=0—>»t*=100—>»t=0

Prediction: Xadv ot Prediction: Prediction:
Deer Frog Dog
Prediction:  Xjzdy - Prediction: Prediction:
Bird Dog Cat
(b)
L Sample-shared noise level fail to address diverse adversarial perturbations.
L These findings highlight the need for sample-specific noise injection levels.
17

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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0

at is the metric?

18
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Intuition from score function

Q Intuition from score function Vylog p(x) 1.000 g EI - E 3 i i_- _i GEEEEE
- i
® Score V log p(X) represents the momentum of the 32 ﬂ! B I:I I I'i I‘ !— f; i= !! lﬂl .II
@ 09507 §*® I - EEE
sample towards high density areas of natural data o = % ! ! ! : i i i ! i F == ii
154 - = 7] = M-
u,0925—--gggilg'fzggggi-n
distribution (Song et al., 2019) = =g fasg8fssciEfsig
e = S
= _ T- T ¥ss=21g=22:35¢8
& £ 0.875- ~ = e
- _ = -
2 - Natural Data T o=
0.850 - _ -
® A lower score norm ||Vilog p(x)|| indicates the sample - Adversarial Data - .
is closer to the high-density areas of natural data 0 10 ] 20 30 40 50
Timestep / 1000
distribution
19

Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score. In ICML, 2023.
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Score norms vs perturbation budgets

Perturbation Budgets

nat 2/255 4/255 —a— 6/255 —a— 8/255

900 Adversarial Data Scores

A\ ’
850 | 2 °

A ‘ \ N \I‘\ J We further find that score norms

\ \ | | ‘ [ . ° .
o0 \ \/ 2 /" WAATINS / /\ scale directly with perturbation
\ \/ | y '
750 L budgets.
700
650 (J Score norms can act as proxies
600 Clean Data Scores for estimating the sample-specific
- noise level.
500
0 10 20 30 40 50 60
Image Index 20

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Sample-specific Score-aware Noise Injection (SSNI)

e=10, =
/ Input x \ Diffused Images with Sample Specific t(x) / Purified Images i\ /Predicted Labels\
— y >\
D
i Forward L Reverse . )
E g > t(z1) =t] Hummingbird
7]
ql,) = Forward Reverse
ISE > t(zz) = t5 Off-the-shelf > Goose
R i Classifier
& 2
° 5
F d - Reverse
orwar g t(zn) = t* ) Wombat
A /
. 4
[ Score Network Sg —> :f::; ||se(x)]| —)[Reweighting Function f }
e B[ fepscal. ) - i
° 7 ’ 1+ exp{—(|[EPS(x)|| — p)/7}

mote
(1P 00 = [Eevtr0, 4T x log e () | x

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Sample-specific Score-aware Noise Injection (SSNI)

@fused Images with Sample Specific t& Purified Images X Predicted Labels
3 F d ; ( h R
h orwari _ everse o -
o 'g > t(z1) =t Hummingbird
=
w
q') = Forward . Reverse
= o > t(a:z) =} HEN Oﬂ-the-shelf_> Goose
ilﬂ 'a‘ Classifier
= =
St
O S
o
Q F d Reverse
e t(z,) =t Wombat .
= A
A \ ) bias term

Sigmoid function sample-shared noise level

\f/
ScoreNetwarc sy > S0 53| —>|RewengmmgFunmonf temperature coefficient
t*
\&HEPS 10 - T
1 + exp{—(|[EPS(x)| ﬁf}@

||EPS || |Et~U(O tS V lOg pt( ) mean EPS norm values of clean examples

the expectation of the scores of perturbed images across
different noise levels t ~ U(0, t>) 2

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Main results: CIFAR10
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PGD+EOT £, (¢ = 8/255)

PGD+EOT /5 (e = 0.5)

DBP Method Standard Robust DBP Method Standard Robust
Nie et al. (2022) 89.7140.72 47.98+0.64 Nie et al. (2022) 91.80+0.84 82.81+0.97
o +SSNI-N 93.29+0.37 (+3.58) 48.63+0.56 (+0.65) o + SSNI-N 93.95+0.70 (+2.15) 82.75+1.01 (-0.06)
R Wang et al. (2022) 92.45+0.64 36.724+1.05 R Wang et al. (2022) 92.45+0.64 82.2940.82
5 + SSNI-N 94.08+0.33 (+1.63)  40.954-0.65 (+4.23) E + SSNI-N 94.08+-0.33 (+1.63) 82.49+0.75 (+0.20)
= Lee & Kim (2023) 90.10+0.18 56.05+1.11 = Lee & Kim (2023) 90.10+0.18 83.664-0.46
+ SSNI-N 93.55+0.55 (+2.66) 56.4540.28 (+0.40) + SSNI-N 93.55+0.55 (+3.45) 84.0540.33 (+0.39)
Nie et al. (2022) 90.89+1.13 52.15+0.30 Nie et al. (2022) 92.90+0.40 82.944+1.13
o +SSNI-N 94.47+0.51 (+3.58) 52.4740.66 (+0.32) o + SSNI-N 95.12+0.58 (+2.22) 84.384-0.58 (+1.44)
S Wang et al. (2022) 93.10+0.51 43.55+0.58 S Wang et al. (2022) 93.1040.51 85.03+0.49
E + SSNI-N 95.57+0.24 (+2.47) 46.0311.33 (+2.48) QZ; + SSNI-N 95.574+0.24 (+2.47)  84.64+0.51 (-0.39)
2 Lee & Kim (2023) 89.394+1.12 56.97+0.33 2 Lee & Kim (2023) 89.394+1.12 84.5140.37
+ SSNI-N 93.82+-0.24 (+4.44) 57.032-0.28 (+0.06) + SSNI-N 93.82+0.24 (+4.43) 84.8340.33 (+0.32)

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Main results: ImageNet-1K

PGD+EOT /o (€ = 4/255)

DBP Method Standard Robust
Nie et al. (2022) 68.2340.92 30.3440.72
+ SSNI-N 70.25+0.56 (+2.02)  33.66:£1.04 (+3.32)
@ Wang et al. (2022) 74.22+0.12 0.3940.03
Z  +SSNI-N 75.07+0.18 (+0.85)  5.21:£0.24 (+4.82)
Lee & Kim (2023) 70.1840.60 42.45+0.92
+ SSNI-N 72.69+0.80 (+2.51)  43.48£0.25 (+1.03)

24

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.



AutoAttack, Diff Attack and Diff-PGD

loo (€ = 8/255)

DBP Method Standard AutoAttack DiffAttack Diff-PGD

Nie et al. (2022) 89.714+0.72 66.73+0.21 47.16+0.48 54.9540.77
o + SSNI-N 93.29+0.37 (+3.58) 66.94+0.44 (+0.21) 48.151+0.22 (+0.99) 56.10+0.35 (+1.15)
ﬁ Wang et al. (2022) 92.454+0.64 64.48+0.62 54.274+0.72 41.4540.60
E' + SSNI-N 94.08+0.33 (+1.63) 66.53+0.46 (+2.05) 55.81+0.33 (+1.54) 42.91+0.56 (+1.46)
= Lee & Kim (2023) 90.10+0.18 69.92+0.30 56.0440.58 59.02+0.28

+ SSNI-N 93.551+0.55 (+3.45)

72.27+0.19 (+2.35) 56.80+0.41 (+0.76) 61.43+0.58 (+2.41)

25

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Inference Time

DBP Method Noise Injection Method Time (s) DBP Method Noise Injection Method Time (s)

- 3.934 - 8.980

Nie et al. (2022) SSNI-L 4473 Nie et al. (2022) SSNI-L 14.515
SSNI-N 4474 SSNI-N 14.437

- 5.174 - 11.271

Wang et al. (2022) SSNI-L 5.793 Wang et al. (2022) SSNI-L 16.657
SSNI-N 5.829 SSNI-N 16.747

- 14.902 - 35.091

Lee & Kim (2023) SSNI-L 15.624 Lee & Kim (2023) SSNI-L 40.526
SSNI-N 15.534 SSNI-N 40.633

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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Limitations of DBP framework & SSNI

dLimitation 1: Having a pre-trained diffusion model is not always
feasible, training a diffusion model is resource-consuming.

dLimitation 2: The inference speed of DBP-based methods is slow.

d Limitation 3: SSNI still injects noise to clean samples, which cannot fully
preserve the utility (i.e., clean accuracy) of the model.

27

Sample-specific Noise Injection for Diffusion-based Adversarial Purification. In ICML, 2025.
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One Stone, Two Birds: Enhancing Adversarial Defense Through the

Lens of Distributional Discrepancy

Jiacheng Zhang, Benjamin I. P. Rubinstein, Jingfeng Zhang, Feng Liuv*

(* Corresponding authors) Paper
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One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Distributional discrepancy minimization improves robustness RIKEN
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Theorem 1. For a hypothesis h € H and a distribution
Dy € D:

1 S dl (DC7 D.A)

risk on adversarial data risk on clean data distributional discrepancy

29

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Distributional discrepancy minimization improves robustness T o

(J Previous Studies: loose bound due to an extra constant
R(h, fa,Da) < R(h, fc,Dc) + di(Dc,D4)+C

(J Ours: tight bound without extra constants

very low if h is a well-trained classifier

risk on adversarial data S distributional dlscrepqncy i

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Distributional-discrepancy-based Adversarial Defense (DAD)
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RIMEN

Training
Clean Data e
(A Parameters are trained\ ) ’ A
Parameters are frozen u :
O' _) Maximize
@ Detected as clean Adversarial Data g Test Power
T 5 =
@ Detected as adversarial ’ g
) [N Train
: MMD-OPT
Adversarial Data Train
o Denoiser “~
Denoiser A Denoised Data
£ ‘ 4
> 2 : S — Minimize
@ Q' MMD-OPT
=
=

Gaussian Noise

Minimize
Cross-entropy

«

Classifier

Inference ..

Test Data

Gaussian Noise

@
v

‘ Denoiser '
Classifier ]
v
Cat 31

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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One stone: optimized MMD RIKEN

Algorithm 1 Optimizing MMD (Liu et al., 2020).
A 2 N N " X
/ 7 \\__ / /. 1: Input: clean data Sg*", adversarial data S, learning rate
MMD-OPT (S, S%))= MMD,, (S, S'Z,(::: )—> 1, epoch T ¢ A
: Tnitialize w < wo; A + 107%;
: forepoch=1,...,7 do

o5 o
THE U RSITY OF

MELBOURNE

2
3 .
. . . . 4:  S¢ < minibatch from Sg*";
0 if same distribution 5. S, < minibatch from S%";
MMD values 1 if different 6: k., < kernel function with parameters w using Eq. (3);
—2
.. 7. M(w) < MMD,(S¢, S's; kw) using Eq. (2);
Training 8  Vi(w) < 6(Sk,S's; k) using Eq. (5);
Clean Data — 9:  Ja(w) ¢+ M(w)/+/Vx(w) using Eq. (4);
10: w4 w~+ NVadamJa(w);
11: end for

12: Output: £,

Maximize

Test Power MMD-OPT serves as:
1. Guiding signal to to train a denoiser.

Train ﬁ 2. Discriminator to differentiate clean data

MMD-OPT and adversarial data during inference
32

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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First bird: MMD-OPT-based denoiser AR oo

Train

Adversarial Data 2 £
Denoiser

o

Denoiser A Denoised Data

= —
o > |- : ->Vk;-> S s
=
l = MMD-OPT(Sc, g6 (Shoise))
e . Minimize
Gaussian Noise e < Classifier . 7

ﬁce(%(ge(snoise))a YC)
Objective: 9o+ = al’g;nin MMD-OPT(S¢, go (Snoise)) + @ = Lee(hE (g0 (Snoise)), Ye)

33

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Second bird: MMD-OPT-based discriminator PR :isouRN:

A &) 9
70 MMD-OPT(Sy, S7)= MMD,,(SyXS7)k:)
' \
| optimized kernel
0 1

clean validation] data

Inference ...

Gaussian Noise

®

‘ Dentser, ‘ Classifier Denoiser test data
vy l (i.e., clean or adversarial)
Classifier . ] .
v Classifier
Cat “

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Adaptive Attack based on PGD+EOT SITETR o

Algorithm 3 Adaptive white-box PGD+EOT attack for 9: else

DAD. 10: Generate Gaussian noise: n ~ N(u, 02);
1: Input: clean data-label pairs (Sc, Yc), optimized character- }é 5;2,8; i: S(i ; r_:_’ Vs, (MMD-OPT(S¢, S4) + a -
istic kernel k, by Algorithm 1, pre-trained classifier b}, de- ﬁce(f/L:( 96 (Shoise)) YCJ;).
noiser g with parameters 6, maximum allowed perturbation €, 3. end if ¢ ’ ’
step size n, PGD iteration 7', EOT iteration K;; 14:  end for
2: Initialize adversarial data Sq <= Sc; p <= 0; 0 <= 0.25; 5. g, -« L Gror;

o 4= 107% ¢  0.05; 16: Update S4 <+ II S A+ mn-sien(G :
for PGD iteration 1, ..., T do 17 endlt)'or Be(sc) (Sa +n - sign(Geor));

3:

4:  Initialize gradients over EOT Ggor < O; 18: Output: S4
5:  Compute MMD-OPT(Sc, S4) by Eq. (6);
6:
7:
8:

for EOT iteration 1, ..., K do . .
if MMD-OPT(Sc, S4) < t then Aims to mislead MMD-OPT,

Geor_¢ Geor + Vis,,(MMD-OPT(Sc, 54) + o - and then, mislead the denoiser and the
Lee(hg(Sa), Ye));

9: else classifier correspondingly

35

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Main results: CIFAR-10

Lo (€ = 8/255) ?5 (e =0.5)
Type Method Clean Robust Type Method Clean Robust
WRN-28-10 WRN-28-10
Gowal et al. (2021) 87.51 63.38 Rebuffi et al. (2021)* 91.79 78.80
AT  Gowal et al. (2020)* 88.54 62.76 AT  Augustin et al. (2020)" 93.96 78.79
Pang et al. (2022a) 88.62 61.04 Sehwag et al. (2022)F 90.93 717.24
Yoon et al. (2021) 85.66 33.48 Yoon et al. (2021) 85.66 73.32
AP Nie et al. (2022) 90.07 46.84 AP Nie et al. (2022) 91.41 79.45
Lee & Kim (2023) 90.16 55.82 Lee & Kim (2023) 90.16 83.59
Ours DAD 94.16 + 0.08 67.53 + 1.07 Ours DAD 94.16 + 0.08 84.38 + 0.81
WRN-70-16 WRN-70-16
Rebuffi et al. (2021)* 92.22 66.56 Rebuffi et al. (2021)* 95.74 82.32
AT Gowal et al. (2021) 88.75 66.10 AT Gowal et al. (2020)* 94.74 80.53
Gowal et al. (2020)* 91.10 65.87 Rebuffi et al. (2021) 92.41 80.42
Yoon et al. (2021) 86.76 37.11 Yoon et al. (2021) 86.76 75.66
AP Nie et al. (2022) 90.43 51.13 AP Nie et al. (2022) 92.15 82.97
Lee & Kim (2023) 90.53 56.88 Lee & Kim (2023) 90.53 83.57
Ours DAD 9391 + 0.11 67.68 + 0.87 Ours DAD 9391 £0.11 84.03 + 0.75

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Main results: ImageNet-1K RIKEN

MELBOURNE

Ly (€ = 4/255)

Type Method Clean Robust
RN-50
Salman et al. (2020a) 64.02 34.96
AT  Engstrom et al. (2019) 62.56 29.22
Wong et al. (2020) 55.62 26.24
AP Nie et al. (2022) 71.48 38.71
Lee & Kim (2023) 70.74 42.15
Ours DAD 78.61 + 0.04 53.85 + 0.23

37

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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RIMEN

Trained on WRN-28-10

Unseen Transfer Attack WRN-70-16 RN-18 RN-50 Swin-T
e —8/255 8084+046 80784060 81.47+030 81.46+0.29
PGD+EOT (be)  _ 19/955 8026+ 0.60 80.54+ 045 80.98+036 80.40 + 041
CaW G) e—05 8245+019 9130+020 8926+0.11 93.45+0.17
: e=10 81204039 9037+017 88.65+022 9341+ 0.18

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.

THE UNIVERSITY OF
MELBOURNE

38



2

Strength of DAD RIKEN
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dStrength 1: DAD can largely preserve the original utility (i.e., clean
accuracy of the classifier).

JStrength 2: Compared to DBP methods that reply on density
estimation, learning distributional discrepancies is a simpler and more
feasible task.

J Strength 3: DAD is efficient in both training and inferencing.

39

One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy. In ICML, 2025.
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Limitations of DAD
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RIM=N
100
950 —
X X 90
o 925 S
< < 80
c 90.0 §o)
S % 70
) 87.5 5
85.0 60
20 40 60 80 100 120 20 40 60 80 100

Batch size

Proportion of AEs in every batch (%)

40
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Thank Youl!
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