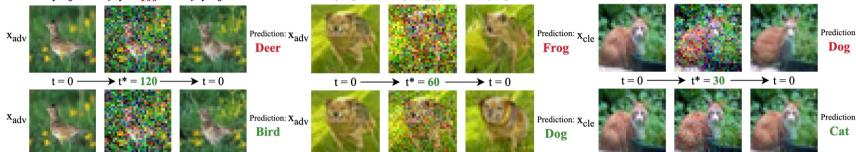
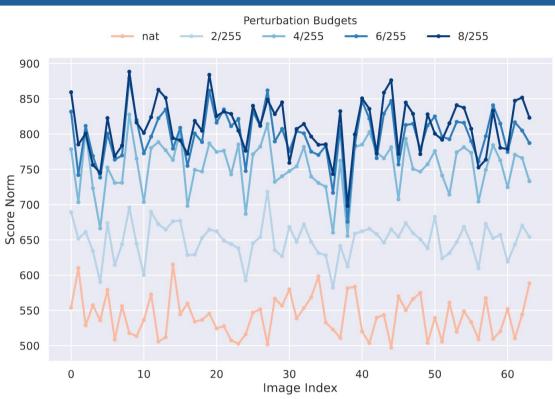


t = 0 -

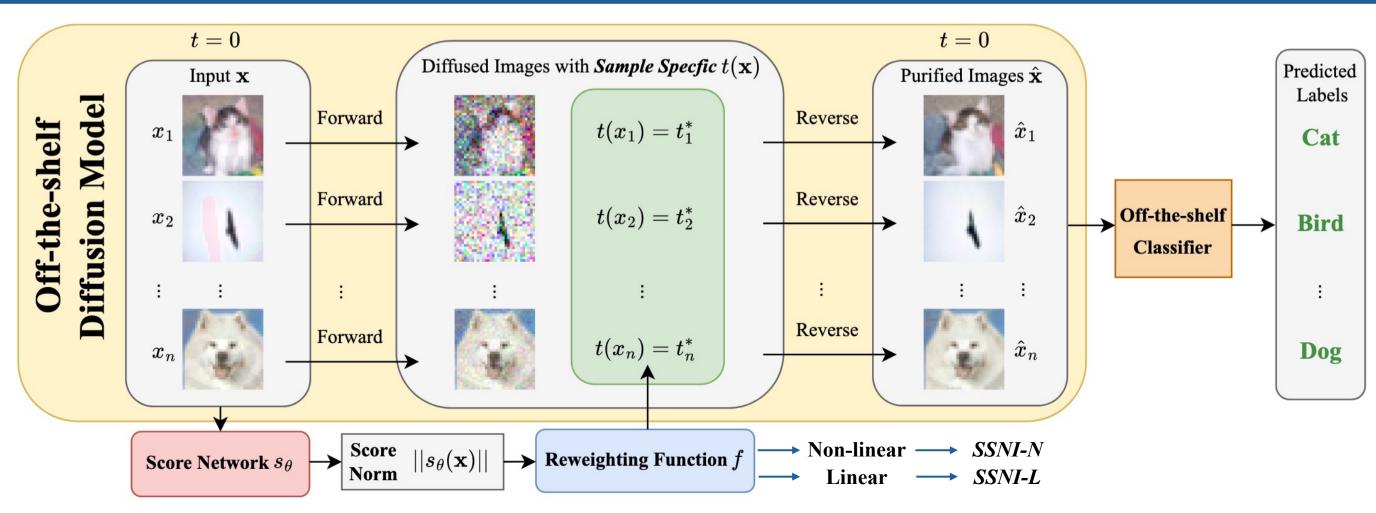

Sample-specific Noise Injection for Diffusion-based Adversarial Purification

Yuhao Sun[^], Jiacheng Zhang[^], Zesheng Ye[^], Chaowei Xiao, Feng Liu^{*} The University of Melbourne and The University of Wisconsin Email: fengliu.ml@gmail.com


Key Challenges in DBP Methods

- ◆ If the noise level t is *too small*, then adversarial noise cannot be fully removed.
- * If the noise level t is *too large*, then the purified image may have a different semantic meaning.
- \clubsuit Existing methods empirically select a *fixed* noise level t^* for all images, which is counterintuitive.

Proof-of-concept Experiments \rightarrow t* = 100 -



- Globally shared noise level $t^* = 100$ results in *suboptimal* prediction performance.
- * $t^* = 100$ is *insufficient* for some images (e.g., some adversarial images), but excessive for others (e.g., clean images). For instance, the image is classified as "frog" (incorrect) with $t^* = 100$ but as "dog" (correct) with $t^* = 60$.
- * These highlight the need for a *sample-wise noise level adjustment*.

- ↔ We find that score norms *scale directly* with perturbation budgets. A lower score norm means closer to clean data distribution.
- Score norms can act as *proxies* for estimating the sample-specific noise level.

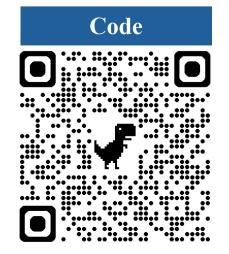
A New Framework: Sample-specific Score-aware Noise Injection (SSNI)

How to Reweight t?

MELBOURNE

Experiment Results

PGD+EOT $\ell_{\infty}~(\epsilon=8/255)$							PGD+EOT $\ell_2~(\epsilon=0.5)$					
	DBP Method	Standard	Robust]	DBP Method	Standard	Robust			
WRN-28-10	Nie et al. (2022) + <i>SSNI-N</i>	89.71±0.72 93.29±0.37 (+3.58)	47.98± 48.63±0.5		0		Nie et al. (2022) + <i>SSNI-N</i>	91.80±0.84 93.95±0.70 (+2.15	82.81±0.97) 82.75±1.01 (-0.06)			
	Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.63)	36.72∃ 40.95±0.6		WRN-28-10		Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.63	82.29±0.82) 82.49±0.75 (+0.20)			
	Lee & Kim (2023) + <i>SSNI-N</i>	90.10±0.18 93.55±0.55 (+3.45)	56.05± 56.45±0.2		WF		Lee & Kim (2023) + <i>SSNI-N</i>	90.10±0.18 93.55±0.55 (+3.45	83.66±0.46) 84.05±0.33 (+0.39)			
WRN-70-16	Nie et al. (2022) + <i>SSNI-N</i>	90.89±1.13 94.47±0.51 (+3.58)	52.15± 52.47±0.6		16		Nie et al. (2022) + <i>SSNI-N</i>	92.90±0.40 95.12±0.58 (+2.22	82.94±1.13) 84.38±0.58 (+1.44)			
	Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57±0.24 (+2.47)	43.55± 46.03±1.3		WRN-70-16		Wang et al. (2022) + <i>SSNI-N</i>	93.10±0.51 95.57±0.24 (+2.47	85.03±0.49) 84.64±0.51 (-0.39)			
	Lee & Kim (2023) + <i>SSNI-N</i>	89.39±1.12 93.82±0.24 (+4.43)	56.97± 57.03±0.2		WF		Lee & Kim (2023) + <i>SSNI-N</i>	89.39±1.12 93.82±0.24 (+4.43	84.51±0.37) 84.83±0.33 (+0.32)			
PGD+EOT ℓ_{∞} ($\epsilon = 4/255$) BPDA+EOT ℓ_{∞} ($\epsilon = 8/255$)												
	DBP Method						DBP Method	$\frac{\mathbf{DA+LOT} \mathcal{E}_{\infty} (\mathcal{E} = 8)}{\mathbf{Standard}}$	Robust			
RN-50	Nie et al. (2022) + SSNI-N	68.23±0.92 70.25±0.56 (+2.02)	30.34±0 33.66±1.04).72	-	0	Nie et al. (2022) + <i>SSNI-N</i>	89.71±0.72 93.29±0.37 (+3.5	81.90±0.49			
	Wang et al. (2022) + <i>SSNI-N</i>	74.22±0.12 75.07±0.18 (+0.85)	0.39±0.03 5.21±0.24 (+4.82)			WRN-28-10	Wang et al. (2022) + <i>SSNI-N</i>	92.45±0.64 94.08±0.33 (+1.6	79.88±0.89 3) 80.99±1.09 (+1.11)			
	Lee & Kim (2023) + SSNI-N	70.18±0.60 72.69±0.80 (+2.51)	42.45±0 43.48±0.25		_	WF	Lee & Kim (2023) + <i>SSNI-N</i>	90.10±0.18 93.55±0.55 (+3.4	88.40±0.88 5) 87.30±0.42 (-1.10)			
$\ell_{\infty}~(\epsilon=8/255)$												
	DBP Method	Method Stand		Aut	toAttacl		k Di	ffAttack	Diff-PGD			
WRN-28-10			0.72 ' (+3.58)	66.73±0 66.94±0.44				16±0.48 (0.22 (+0.99) 5	54.95±0.77 5.10±0.35 (+1.15)			
	Wang et al. (20 + <i>SSNI-N</i>	/	92.45±0.64 8±0.33 (+1.63)		64.48±0			27±0.72 0.33 (+1.54) 4	41.45±0.60 2.91±0.56 (+1.46)			
WR	Lee & Kim (20	90.10±	90.10±0.18		69.92±0.30			04±0.58	59.02±0.28			


DBP Method	Noise Injection Method	Time (s)	DBP Method	Noise Injection Method	Time (s)
	-	3.934		-	8.980
Nie et al. (2022)	SSNI-L	4.473	Nie et al. (2022)	SSNI-L	14.515
	SSNI-N	4.474		SSNI-N	14.437
	-	5.174		-	11.271
Wang et al. (2022)	SSNI-L	5.793	Wang et al. (2022)	SSNI-L	16.657
	SSNI-N	5.829		SSNI-N	16.747
	-	14.902		-	35.091
Lee & Kim (2023)	SSNI-L	15.624	Lee & Kim (2023)	SSNI-L	40.526
	SSNI-N	15.534		SSNI-N	40.633

72.27±0.19 (+2.35)

 $93.55 \pm 0.55 (+3.45)$

 $+ SSNI-\lambda$

Contact

61.43±0.58 (+2.41)

56.80±0.41 (+0.76)

