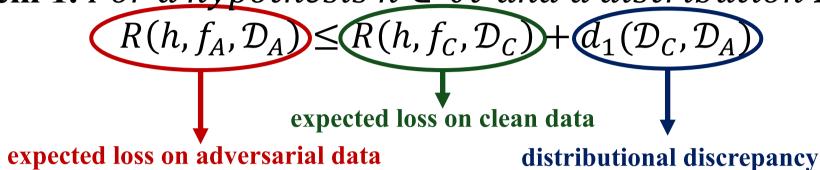
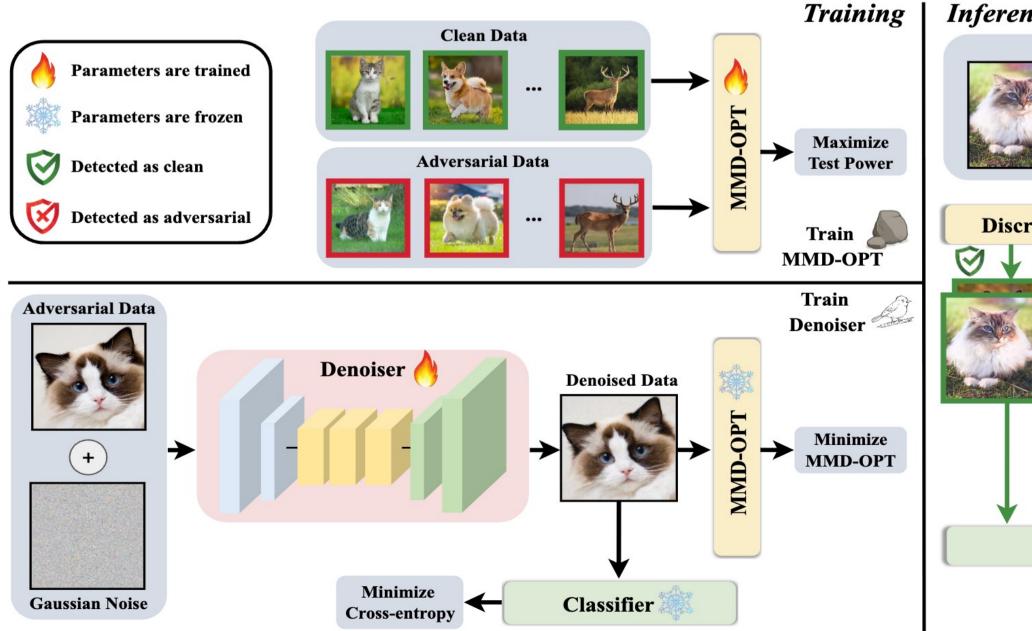


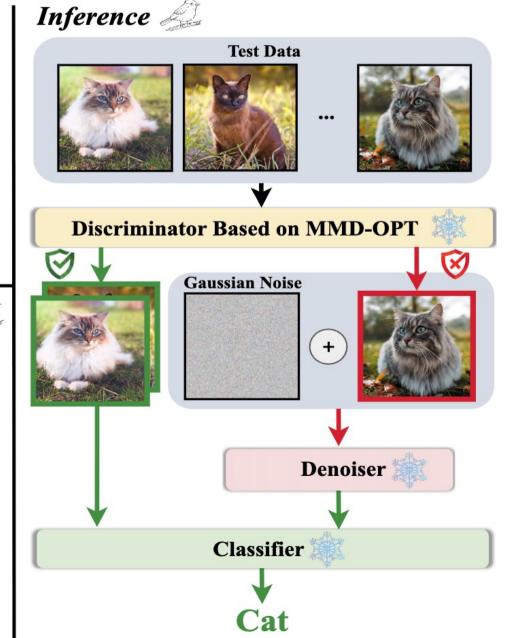
One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy


ICVL
International Conference
On Machine Learning

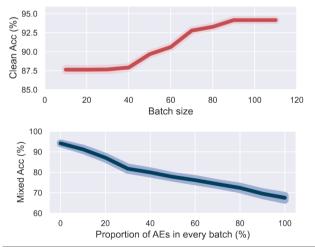
THE UNIVERSITY OF
AUCKLAND
Te Whare Wānanga o Tāmaki Makaurau
N E W Z E A L A N D

Jiacheng Zhang, Benjamin I. P. Rubinstein, Jingfeng Zhang, Feng Liu* (fengliu.ml@gmail.com)

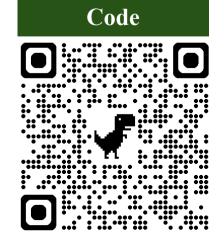

An Upper Bound Without Constant: Significance of Distributional Discrepancy to Adversarial Defense


Theorem 1. For a hypothesis $h \in \mathcal{H}$ and a distribution $\mathcal{D}_A \in \mathbb{D}$:

Distributional Discrepancy Minimization reduces the expected loss on adversarial data


A New Framework: Distributional-discrepancy-based Adversarial Defense

Experiment Results


$\ell_{\infty}~(\epsilon=8/255)$				$\ell_2~(\epsilon=0.5)$			
Type	Method	Clean	Robust	Type	Method	Clean	Robust
WRN-28-10				WRN-28-10			
	Gowal et al. (2021)	87.51	63.38		Rebuffi et al. (2021)*	91.79	78.80
AT	Gowal et al. (2020)*	88.54	62.76	AT	Augustin et al. (2020) [†]	93.96	78.79
	Pang et al. (2022a)	88.62	61.04		Sehwag et al. (2022) [†]	90.93	77.24
AP	Yoon et al. (2021)	85.66	33.48		Yoon et al. (2021)	85.66	73.32
	Nie et al. (2022)	90.07	46.84	AP	Nie et al. (2022)	91.41	79.45
	Lee & Kim (2023)	90.16	55.82		Lee & Kim (2023)	90.16	83.59
Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{67.53} \pm \textbf{1.07}$	Ours	DAD	$\textbf{94.16} \pm \textbf{0.08}$	$\textbf{84.38} \pm \textbf{0.81}$
WRN-70-16				WRN-70-16			
	Rebuffi et al. (2021)*	92.22	66.56		Rebuffi et al. (2021)*	95.74	82.32
AT	Gowal et al. (2021)	88.75	66.10	AT	Gowal et al. (2020)*	94.74	80.53
	Gowal et al. (2020)*	91.10	65.87		Rebuffi et al. (2021)	92.41	80.42
AP	Yoon et al. (2021)	86.76	37.11		Yoon et al. (2021)	86.76	75.66
	Nie et al. (2022)	90.43	51.13	AP	Nie et al. (2022)	92.15	82.97
	Lee & Kim (2023)	90.53	56.88		Lee & Kim (2023)	90.53	83.57
Ours	DAD	$\textbf{93.91} \pm \textbf{0.11}$	$\textbf{67.68} \pm \textbf{0.87}$	Ours	DAD	93.91 ± 0.11	$\textbf{84.03} \pm \textbf{0.75}$

$\ell_{\infty}~(\epsilon=4/255)$								
Type	Method	Clean	Robust					
	RN	RN-50						
	Salman et al. (2020a)	64.02	34.96					
AT	Engstrom et al. (2019)	62.56	29.22					
	Wong et al. (2020)	55.62	26.24					
AP	Nie et al. (2022)	71.48	38.71					
Ar	Lee & Kim (2023)	70.74	42.15					
Ours	DAD	$\textbf{78.61} \pm \textbf{0.04}$	$\textbf{53.85} \pm \textbf{0.23}$					
		•						

Trained on WRN-28-10										
Unseen Transfer Attack		WRN-70-16	RN-18	RN-50	Swin-T					
PGD+EOT (ℓ_{∞})	$\begin{aligned} \epsilon &= 8/255 \\ \epsilon &= 12/255 \end{aligned}$	80.84 ± 0.46 80.26 ± 0.60	80.78 ± 0.60 80.54 ± 0.45	81.47 ± 0.30 80.98 ± 0.36	81.46 ± 0.29 80.40 ± 0.41					
C&W (ℓ_2)	$\epsilon=0.5 \ \epsilon=1.0$	82.45 ± 0.19 81.20 ± 0.39	$\begin{array}{c} 91.30 \pm 0.20 \\ 90.37 \pm 0.17 \end{array}$	89.26 ± 0.11 88.65 ± 0.22	93.45 ± 0.17 93.41 ± 0.18					

